Properties

Label 338.3.d.f.239.2
Level $338$
Weight $3$
Character 338.239
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 239.2
Root \(-4.71318 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.239
Dual form 338.3.d.f.99.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} -3.84716 q^{3} -2.00000i q^{4} +(-3.77418 + 3.77418i) q^{5} +(3.84716 - 3.84716i) q^{6} +(-7.25532 - 7.25532i) q^{7} +(2.00000 + 2.00000i) q^{8} +5.80063 q^{9} -7.54837i q^{10} +(-7.40816 - 7.40816i) q^{11} +7.69432i q^{12} +14.5106 q^{14} +(14.5199 - 14.5199i) q^{15} -4.00000 q^{16} -4.88811i q^{17} +(-5.80063 + 5.80063i) q^{18} +(-18.6785 + 18.6785i) q^{19} +(7.54837 + 7.54837i) q^{20} +(27.9124 + 27.9124i) q^{21} +14.8163 q^{22} -19.9590i q^{23} +(-7.69432 - 7.69432i) q^{24} -3.48892i q^{25} +12.3085 q^{27} +(-14.5106 + 14.5106i) q^{28} +14.3044 q^{29} +29.0398i q^{30} +(-19.0056 + 19.0056i) q^{31} +(4.00000 - 4.00000i) q^{32} +(28.5004 + 28.5004i) q^{33} +(4.88811 + 4.88811i) q^{34} +54.7658 q^{35} -11.6013i q^{36} +(42.9072 + 42.9072i) q^{37} -37.3569i q^{38} -15.0967 q^{40} +(-3.54099 + 3.54099i) q^{41} -55.8247 q^{42} +11.9728i q^{43} +(-14.8163 + 14.8163i) q^{44} +(-21.8926 + 21.8926i) q^{45} +(19.9590 + 19.9590i) q^{46} +(7.59168 + 7.59168i) q^{47} +15.3886 q^{48} +56.2792i q^{49} +(3.48892 + 3.48892i) q^{50} +18.8053i q^{51} +77.0450 q^{53} +(-12.3085 + 12.3085i) q^{54} +55.9195 q^{55} -29.0213i q^{56} +(71.8590 - 71.8590i) q^{57} +(-14.3044 + 14.3044i) q^{58} +(-44.4819 - 44.4819i) q^{59} +(-29.0398 - 29.0398i) q^{60} -56.2764 q^{61} -38.0112i q^{62} +(-42.0854 - 42.0854i) q^{63} +8.00000i q^{64} -57.0007 q^{66} +(4.32207 - 4.32207i) q^{67} -9.77622 q^{68} +76.7856i q^{69} +(-54.7658 + 54.7658i) q^{70} +(40.4291 - 40.4291i) q^{71} +(11.6013 + 11.6013i) q^{72} +(-12.7990 - 12.7990i) q^{73} -85.8143 q^{74} +13.4224i q^{75} +(37.3569 + 37.3569i) q^{76} +107.497i q^{77} +7.98532 q^{79} +(15.0967 - 15.0967i) q^{80} -99.5584 q^{81} -7.08199i q^{82} +(35.8343 - 35.8343i) q^{83} +(55.8247 - 55.8247i) q^{84} +(18.4486 + 18.4486i) q^{85} +(-11.9728 - 11.9728i) q^{86} -55.0312 q^{87} -29.6326i q^{88} +(-57.2867 - 57.2867i) q^{89} -43.7853i q^{90} -39.9181 q^{92} +(73.1175 - 73.1175i) q^{93} -15.1834 q^{94} -140.992i q^{95} +(-15.3886 + 15.3886i) q^{96} +(38.7928 - 38.7928i) q^{97} +(-56.2792 - 56.2792i) q^{98} +(-42.9720 - 42.9720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 6 q^{5} - 10 q^{7} + 16 q^{8} + 84 q^{9} - 42 q^{11} + 20 q^{14} - 60 q^{15} - 32 q^{16} - 84 q^{18} - 22 q^{19} + 12 q^{20} + 102 q^{21} + 84 q^{22} + 72 q^{27} - 20 q^{28} + 12 q^{29}+ \cdots - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) −3.84716 −1.28239 −0.641193 0.767380i \(-0.721560\pi\)
−0.641193 + 0.767380i \(0.721560\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −3.77418 + 3.77418i −0.754837 + 0.754837i −0.975378 0.220541i \(-0.929218\pi\)
0.220541 + 0.975378i \(0.429218\pi\)
\(6\) 3.84716 3.84716i 0.641193 0.641193i
\(7\) −7.25532 7.25532i −1.03647 1.03647i −0.999309 0.0371646i \(-0.988167\pi\)
−0.0371646 0.999309i \(-0.511833\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 5.80063 0.644514
\(10\) 7.54837i 0.754837i
\(11\) −7.40816 7.40816i −0.673469 0.673469i 0.285045 0.958514i \(-0.407991\pi\)
−0.958514 + 0.285045i \(0.907991\pi\)
\(12\) 7.69432i 0.641193i
\(13\) 0 0
\(14\) 14.5106 1.03647
\(15\) 14.5199 14.5199i 0.967992 0.967992i
\(16\) −4.00000 −0.250000
\(17\) 4.88811i 0.287536i −0.989611 0.143768i \(-0.954078\pi\)
0.989611 0.143768i \(-0.0459219\pi\)
\(18\) −5.80063 + 5.80063i −0.322257 + 0.322257i
\(19\) −18.6785 + 18.6785i −0.983077 + 0.983077i −0.999859 0.0167821i \(-0.994658\pi\)
0.0167821 + 0.999859i \(0.494658\pi\)
\(20\) 7.54837 + 7.54837i 0.377418 + 0.377418i
\(21\) 27.9124 + 27.9124i 1.32916 + 1.32916i
\(22\) 14.8163 0.673469
\(23\) 19.9590i 0.867785i −0.900965 0.433892i \(-0.857140\pi\)
0.900965 0.433892i \(-0.142860\pi\)
\(24\) −7.69432 7.69432i −0.320597 0.320597i
\(25\) 3.48892i 0.139557i
\(26\) 0 0
\(27\) 12.3085 0.455870
\(28\) −14.5106 + 14.5106i −0.518237 + 0.518237i
\(29\) 14.3044 0.493254 0.246627 0.969110i \(-0.420678\pi\)
0.246627 + 0.969110i \(0.420678\pi\)
\(30\) 29.0398i 0.967992i
\(31\) −19.0056 + 19.0056i −0.613083 + 0.613083i −0.943748 0.330665i \(-0.892727\pi\)
0.330665 + 0.943748i \(0.392727\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) 28.5004 + 28.5004i 0.863647 + 0.863647i
\(34\) 4.88811 + 4.88811i 0.143768 + 0.143768i
\(35\) 54.7658 1.56474
\(36\) 11.6013i 0.322257i
\(37\) 42.9072 + 42.9072i 1.15965 + 1.15965i 0.984550 + 0.175103i \(0.0560259\pi\)
0.175103 + 0.984550i \(0.443974\pi\)
\(38\) 37.3569i 0.983077i
\(39\) 0 0
\(40\) −15.0967 −0.377418
\(41\) −3.54099 + 3.54099i −0.0863657 + 0.0863657i −0.748970 0.662604i \(-0.769451\pi\)
0.662604 + 0.748970i \(0.269451\pi\)
\(42\) −55.8247 −1.32916
\(43\) 11.9728i 0.278438i 0.990262 + 0.139219i \(0.0444592\pi\)
−0.990262 + 0.139219i \(0.955541\pi\)
\(44\) −14.8163 + 14.8163i −0.336734 + 0.336734i
\(45\) −21.8926 + 21.8926i −0.486503 + 0.486503i
\(46\) 19.9590 + 19.9590i 0.433892 + 0.433892i
\(47\) 7.59168 + 7.59168i 0.161525 + 0.161525i 0.783242 0.621717i \(-0.213565\pi\)
−0.621717 + 0.783242i \(0.713565\pi\)
\(48\) 15.3886 0.320597
\(49\) 56.2792i 1.14856i
\(50\) 3.48892 + 3.48892i 0.0697783 + 0.0697783i
\(51\) 18.8053i 0.368732i
\(52\) 0 0
\(53\) 77.0450 1.45368 0.726840 0.686807i \(-0.240988\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(54\) −12.3085 + 12.3085i −0.227935 + 0.227935i
\(55\) 55.9195 1.01672
\(56\) 29.0213i 0.518237i
\(57\) 71.8590 71.8590i 1.26068 1.26068i
\(58\) −14.3044 + 14.3044i −0.246627 + 0.246627i
\(59\) −44.4819 44.4819i −0.753930 0.753930i 0.221280 0.975210i \(-0.428976\pi\)
−0.975210 + 0.221280i \(0.928976\pi\)
\(60\) −29.0398 29.0398i −0.483996 0.483996i
\(61\) −56.2764 −0.922564 −0.461282 0.887254i \(-0.652610\pi\)
−0.461282 + 0.887254i \(0.652610\pi\)
\(62\) 38.0112i 0.613083i
\(63\) −42.0854 42.0854i −0.668022 0.668022i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) −57.0007 −0.863647
\(67\) 4.32207 4.32207i 0.0645085 0.0645085i −0.674117 0.738625i \(-0.735475\pi\)
0.738625 + 0.674117i \(0.235475\pi\)
\(68\) −9.77622 −0.143768
\(69\) 76.7856i 1.11283i
\(70\) −54.7658 + 54.7658i −0.782368 + 0.782368i
\(71\) 40.4291 40.4291i 0.569424 0.569424i −0.362543 0.931967i \(-0.618091\pi\)
0.931967 + 0.362543i \(0.118091\pi\)
\(72\) 11.6013 + 11.6013i 0.161129 + 0.161129i
\(73\) −12.7990 12.7990i −0.175329 0.175329i 0.613987 0.789316i \(-0.289565\pi\)
−0.789316 + 0.613987i \(0.789565\pi\)
\(74\) −85.8143 −1.15965
\(75\) 13.4224i 0.178966i
\(76\) 37.3569 + 37.3569i 0.491539 + 0.491539i
\(77\) 107.497i 1.39607i
\(78\) 0 0
\(79\) 7.98532 0.101080 0.0505400 0.998722i \(-0.483906\pi\)
0.0505400 + 0.998722i \(0.483906\pi\)
\(80\) 15.0967 15.0967i 0.188709 0.188709i
\(81\) −99.5584 −1.22912
\(82\) 7.08199i 0.0863657i
\(83\) 35.8343 35.8343i 0.431738 0.431738i −0.457481 0.889219i \(-0.651248\pi\)
0.889219 + 0.457481i \(0.151248\pi\)
\(84\) 55.8247 55.8247i 0.664580 0.664580i
\(85\) 18.4486 + 18.4486i 0.217043 + 0.217043i
\(86\) −11.9728 11.9728i −0.139219 0.139219i
\(87\) −55.0312 −0.632542
\(88\) 29.6326i 0.336734i
\(89\) −57.2867 57.2867i −0.643671 0.643671i 0.307785 0.951456i \(-0.400412\pi\)
−0.951456 + 0.307785i \(0.900412\pi\)
\(90\) 43.7853i 0.486503i
\(91\) 0 0
\(92\) −39.9181 −0.433892
\(93\) 73.1175 73.1175i 0.786209 0.786209i
\(94\) −15.1834 −0.161525
\(95\) 140.992i 1.48413i
\(96\) −15.3886 + 15.3886i −0.160298 + 0.160298i
\(97\) 38.7928 38.7928i 0.399926 0.399926i −0.478281 0.878207i \(-0.658740\pi\)
0.878207 + 0.478281i \(0.158740\pi\)
\(98\) −56.2792 56.2792i −0.574278 0.574278i
\(99\) −42.9720 42.9720i −0.434060 0.434060i
\(100\) −6.97783 −0.0697783
\(101\) 14.0635i 0.139242i 0.997573 + 0.0696212i \(0.0221791\pi\)
−0.997573 + 0.0696212i \(0.977821\pi\)
\(102\) −18.8053 18.8053i −0.184366 0.184366i
\(103\) 80.8399i 0.784853i −0.919783 0.392426i \(-0.871636\pi\)
0.919783 0.392426i \(-0.128364\pi\)
\(104\) 0 0
\(105\) −210.693 −2.00660
\(106\) −77.0450 + 77.0450i −0.726840 + 0.726840i
\(107\) 162.705 1.52061 0.760304 0.649568i \(-0.225050\pi\)
0.760304 + 0.649568i \(0.225050\pi\)
\(108\) 24.6170i 0.227935i
\(109\) 62.6738 62.6738i 0.574989 0.574989i −0.358530 0.933518i \(-0.616722\pi\)
0.933518 + 0.358530i \(0.116722\pi\)
\(110\) −55.9195 + 55.9195i −0.508359 + 0.508359i
\(111\) −165.071 165.071i −1.48712 1.48712i
\(112\) 29.0213 + 29.0213i 0.259118 + 0.259118i
\(113\) −69.8809 −0.618415 −0.309208 0.950995i \(-0.600064\pi\)
−0.309208 + 0.950995i \(0.600064\pi\)
\(114\) 143.718i 1.26068i
\(115\) 75.3291 + 75.3291i 0.655036 + 0.655036i
\(116\) 28.6087i 0.246627i
\(117\) 0 0
\(118\) 88.9637 0.753930
\(119\) −35.4648 + 35.4648i −0.298024 + 0.298024i
\(120\) 58.0795 0.483996
\(121\) 11.2384i 0.0928793i
\(122\) 56.2764 56.2764i 0.461282 0.461282i
\(123\) 13.6228 13.6228i 0.110754 0.110754i
\(124\) 38.0112 + 38.0112i 0.306542 + 0.306542i
\(125\) −81.1868 81.1868i −0.649494 0.649494i
\(126\) 84.1708 0.668022
\(127\) 82.7908i 0.651896i 0.945388 + 0.325948i \(0.105683\pi\)
−0.945388 + 0.325948i \(0.894317\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 46.0614i 0.357065i
\(130\) 0 0
\(131\) 47.8506 0.365272 0.182636 0.983181i \(-0.441537\pi\)
0.182636 + 0.983181i \(0.441537\pi\)
\(132\) 57.0007 57.0007i 0.431824 0.431824i
\(133\) 271.036 2.03787
\(134\) 8.64414i 0.0645085i
\(135\) −46.4545 + 46.4545i −0.344107 + 0.344107i
\(136\) 9.77622 9.77622i 0.0718840 0.0718840i
\(137\) 136.082 + 136.082i 0.993298 + 0.993298i 0.999978 0.00667939i \(-0.00212613\pi\)
−0.00667939 + 0.999978i \(0.502126\pi\)
\(138\) −76.7856 76.7856i −0.556417 0.556417i
\(139\) 193.093 1.38916 0.694578 0.719417i \(-0.255591\pi\)
0.694578 + 0.719417i \(0.255591\pi\)
\(140\) 109.532i 0.782368i
\(141\) −29.2064 29.2064i −0.207137 0.207137i
\(142\) 80.8582i 0.569424i
\(143\) 0 0
\(144\) −23.2025 −0.161129
\(145\) −53.9873 + 53.9873i −0.372326 + 0.372326i
\(146\) 25.5980 0.175329
\(147\) 216.515i 1.47289i
\(148\) 85.8143 85.8143i 0.579827 0.579827i
\(149\) −95.0866 + 95.0866i −0.638165 + 0.638165i −0.950103 0.311938i \(-0.899022\pi\)
0.311938 + 0.950103i \(0.399022\pi\)
\(150\) −13.4224 13.4224i −0.0894828 0.0894828i
\(151\) −26.5821 26.5821i −0.176041 0.176041i 0.613587 0.789627i \(-0.289726\pi\)
−0.789627 + 0.613587i \(0.789726\pi\)
\(152\) −74.7139 −0.491539
\(153\) 28.3541i 0.185321i
\(154\) −107.497 107.497i −0.698033 0.698033i
\(155\) 143.461i 0.925555i
\(156\) 0 0
\(157\) −251.005 −1.59876 −0.799380 0.600826i \(-0.794838\pi\)
−0.799380 + 0.600826i \(0.794838\pi\)
\(158\) −7.98532 + 7.98532i −0.0505400 + 0.0505400i
\(159\) −296.404 −1.86418
\(160\) 30.1935i 0.188709i
\(161\) −144.809 + 144.809i −0.899436 + 0.899436i
\(162\) 99.5584 99.5584i 0.614558 0.614558i
\(163\) 85.9701 + 85.9701i 0.527424 + 0.527424i 0.919803 0.392380i \(-0.128348\pi\)
−0.392380 + 0.919803i \(0.628348\pi\)
\(164\) 7.08199 + 7.08199i 0.0431829 + 0.0431829i
\(165\) −215.131 −1.30383
\(166\) 71.6686i 0.431738i
\(167\) 43.7710 + 43.7710i 0.262102 + 0.262102i 0.825907 0.563806i \(-0.190663\pi\)
−0.563806 + 0.825907i \(0.690663\pi\)
\(168\) 111.649i 0.664580i
\(169\) 0 0
\(170\) −36.8973 −0.217043
\(171\) −108.347 + 108.347i −0.633607 + 0.633607i
\(172\) 23.9457 0.139219
\(173\) 310.835i 1.79674i 0.439244 + 0.898368i \(0.355246\pi\)
−0.439244 + 0.898368i \(0.644754\pi\)
\(174\) 55.0312 55.0312i 0.316271 0.316271i
\(175\) −25.3132 + 25.3132i −0.144647 + 0.144647i
\(176\) 29.6326 + 29.6326i 0.168367 + 0.168367i
\(177\) 171.129 + 171.129i 0.966829 + 0.966829i
\(178\) 114.573 0.643671
\(179\) 63.3403i 0.353856i −0.984224 0.176928i \(-0.943384\pi\)
0.984224 0.176928i \(-0.0566160\pi\)
\(180\) 43.7853 + 43.7853i 0.243251 + 0.243251i
\(181\) 186.504i 1.03041i 0.857067 + 0.515205i \(0.172284\pi\)
−0.857067 + 0.515205i \(0.827716\pi\)
\(182\) 0 0
\(183\) 216.504 1.18308
\(184\) 39.9181 39.9181i 0.216946 0.216946i
\(185\) −323.879 −1.75070
\(186\) 146.235i 0.786209i
\(187\) −36.2119 + 36.2119i −0.193647 + 0.193647i
\(188\) 15.1834 15.1834i 0.0807625 0.0807625i
\(189\) −89.3020 89.3020i −0.472497 0.472497i
\(190\) 140.992 + 140.992i 0.742063 + 0.742063i
\(191\) −182.691 −0.956500 −0.478250 0.878224i \(-0.658729\pi\)
−0.478250 + 0.878224i \(0.658729\pi\)
\(192\) 30.7773i 0.160298i
\(193\) 64.4548 + 64.4548i 0.333963 + 0.333963i 0.854089 0.520126i \(-0.174115\pi\)
−0.520126 + 0.854089i \(0.674115\pi\)
\(194\) 77.5856i 0.399926i
\(195\) 0 0
\(196\) 112.558 0.574278
\(197\) 152.596 152.596i 0.774600 0.774600i −0.204307 0.978907i \(-0.565494\pi\)
0.978907 + 0.204307i \(0.0654940\pi\)
\(198\) 85.9439 0.434060
\(199\) 78.4893i 0.394418i 0.980361 + 0.197209i \(0.0631878\pi\)
−0.980361 + 0.197209i \(0.936812\pi\)
\(200\) 6.97783 6.97783i 0.0348892 0.0348892i
\(201\) −16.6277 + 16.6277i −0.0827248 + 0.0827248i
\(202\) −14.0635 14.0635i −0.0696212 0.0696212i
\(203\) −103.783 103.783i −0.511245 0.511245i
\(204\) 37.6107 0.184366
\(205\) 26.7287i 0.130384i
\(206\) 80.8399 + 80.8399i 0.392426 + 0.392426i
\(207\) 115.775i 0.559300i
\(208\) 0 0
\(209\) 276.746 1.32414
\(210\) 210.693 210.693i 1.00330 1.00330i
\(211\) −132.398 −0.627478 −0.313739 0.949509i \(-0.601582\pi\)
−0.313739 + 0.949509i \(0.601582\pi\)
\(212\) 154.090i 0.726840i
\(213\) −155.537 + 155.537i −0.730221 + 0.730221i
\(214\) −162.705 + 162.705i −0.760304 + 0.760304i
\(215\) −45.1876 45.1876i −0.210175 0.210175i
\(216\) 24.6170 + 24.6170i 0.113968 + 0.113968i
\(217\) 275.783 1.27089
\(218\) 125.348i 0.574989i
\(219\) 49.2398 + 49.2398i 0.224839 + 0.224839i
\(220\) 111.839i 0.508359i
\(221\) 0 0
\(222\) 330.141 1.48712
\(223\) −84.4985 + 84.4985i −0.378917 + 0.378917i −0.870711 0.491794i \(-0.836341\pi\)
0.491794 + 0.870711i \(0.336341\pi\)
\(224\) −58.0425 −0.259118
\(225\) 20.2379i 0.0899462i
\(226\) 69.8809 69.8809i 0.309208 0.309208i
\(227\) 299.942 299.942i 1.32133 1.32133i 0.408632 0.912699i \(-0.366006\pi\)
0.912699 0.408632i \(-0.133994\pi\)
\(228\) −143.718 143.718i −0.630342 0.630342i
\(229\) 158.206 + 158.206i 0.690856 + 0.690856i 0.962420 0.271564i \(-0.0875409\pi\)
−0.271564 + 0.962420i \(0.587541\pi\)
\(230\) −150.658 −0.655036
\(231\) 413.558i 1.79030i
\(232\) 28.6087 + 28.6087i 0.123314 + 0.123314i
\(233\) 163.030i 0.699701i 0.936806 + 0.349850i \(0.113768\pi\)
−0.936806 + 0.349850i \(0.886232\pi\)
\(234\) 0 0
\(235\) −57.3048 −0.243850
\(236\) −88.9637 + 88.9637i −0.376965 + 0.376965i
\(237\) −30.7208 −0.129624
\(238\) 70.9296i 0.298024i
\(239\) 185.455 185.455i 0.775962 0.775962i −0.203179 0.979142i \(-0.565127\pi\)
0.979142 + 0.203179i \(0.0651275\pi\)
\(240\) −58.0795 + 58.0795i −0.241998 + 0.241998i
\(241\) 321.239 + 321.239i 1.33294 + 1.33294i 0.902728 + 0.430212i \(0.141561\pi\)
0.430212 + 0.902728i \(0.358439\pi\)
\(242\) 11.2384 + 11.2384i 0.0464397 + 0.0464397i
\(243\) 272.240 1.12033
\(244\) 112.553i 0.461282i
\(245\) −212.408 212.408i −0.866972 0.866972i
\(246\) 27.2455i 0.110754i
\(247\) 0 0
\(248\) −76.0223 −0.306542
\(249\) −137.860 + 137.860i −0.553655 + 0.553655i
\(250\) 162.374 0.649494
\(251\) 438.996i 1.74899i 0.485035 + 0.874495i \(0.338807\pi\)
−0.485035 + 0.874495i \(0.661193\pi\)
\(252\) −84.1708 + 84.1708i −0.334011 + 0.334011i
\(253\) −147.860 + 147.860i −0.584426 + 0.584426i
\(254\) −82.7908 82.7908i −0.325948 0.325948i
\(255\) −70.9748 70.9748i −0.278333 0.278333i
\(256\) 16.0000 0.0625000
\(257\) 437.208i 1.70120i −0.525815 0.850599i \(-0.676240\pi\)
0.525815 0.850599i \(-0.323760\pi\)
\(258\) 46.0614 + 46.0614i 0.178532 + 0.178532i
\(259\) 622.610i 2.40390i
\(260\) 0 0
\(261\) 82.9743 0.317909
\(262\) −47.8506 + 47.8506i −0.182636 + 0.182636i
\(263\) −287.959 −1.09490 −0.547451 0.836838i \(-0.684402\pi\)
−0.547451 + 0.836838i \(0.684402\pi\)
\(264\) 114.001i 0.431824i
\(265\) −290.782 + 290.782i −1.09729 + 1.09729i
\(266\) −271.036 + 271.036i −1.01893 + 1.01893i
\(267\) 220.391 + 220.391i 0.825435 + 0.825435i
\(268\) −8.64414 8.64414i −0.0322542 0.0322542i
\(269\) 343.400 1.27658 0.638290 0.769796i \(-0.279642\pi\)
0.638290 + 0.769796i \(0.279642\pi\)
\(270\) 92.9090i 0.344107i
\(271\) −5.87429 5.87429i −0.0216764 0.0216764i 0.696186 0.717862i \(-0.254879\pi\)
−0.717862 + 0.696186i \(0.754879\pi\)
\(272\) 19.5524i 0.0718840i
\(273\) 0 0
\(274\) −272.164 −0.993298
\(275\) −25.8464 + 25.8464i −0.0939871 + 0.0939871i
\(276\) 153.571 0.556417
\(277\) 444.247i 1.60378i −0.597471 0.801891i \(-0.703828\pi\)
0.597471 0.801891i \(-0.296172\pi\)
\(278\) −193.093 + 193.093i −0.694578 + 0.694578i
\(279\) −110.244 + 110.244i −0.395141 + 0.395141i
\(280\) 109.532 + 109.532i 0.391184 + 0.391184i
\(281\) 163.678 + 163.678i 0.582486 + 0.582486i 0.935586 0.353100i \(-0.114872\pi\)
−0.353100 + 0.935586i \(0.614872\pi\)
\(282\) 58.4128 0.207137
\(283\) 464.139i 1.64007i 0.572315 + 0.820034i \(0.306045\pi\)
−0.572315 + 0.820034i \(0.693955\pi\)
\(284\) −80.8582 80.8582i −0.284712 0.284712i
\(285\) 542.418i 1.90322i
\(286\) 0 0
\(287\) 51.3821 0.179032
\(288\) 23.2025 23.2025i 0.0805643 0.0805643i
\(289\) 265.106 0.917323
\(290\) 107.975i 0.372326i
\(291\) −149.242 + 149.242i −0.512859 + 0.512859i
\(292\) −25.5980 + 25.5980i −0.0876644 + 0.0876644i
\(293\) −44.9476 44.9476i −0.153405 0.153405i 0.626232 0.779637i \(-0.284596\pi\)
−0.779637 + 0.626232i \(0.784596\pi\)
\(294\) 216.515 + 216.515i 0.736446 + 0.736446i
\(295\) 335.765 1.13819
\(296\) 171.629i 0.579827i
\(297\) −91.1832 91.1832i −0.307014 0.307014i
\(298\) 190.173i 0.638165i
\(299\) 0 0
\(300\) 26.8448 0.0894828
\(301\) 86.8667 86.8667i 0.288594 0.288594i
\(302\) 53.1643 0.176041
\(303\) 54.1045i 0.178563i
\(304\) 74.7139 74.7139i 0.245769 0.245769i
\(305\) 212.397 212.397i 0.696385 0.696385i
\(306\) 28.3541 + 28.3541i 0.0926605 + 0.0926605i
\(307\) −67.1395 67.1395i −0.218695 0.218695i 0.589253 0.807948i \(-0.299422\pi\)
−0.807948 + 0.589253i \(0.799422\pi\)
\(308\) 214.994 0.698033
\(309\) 311.004i 1.00648i
\(310\) 143.461 + 143.461i 0.462778 + 0.462778i
\(311\) 331.141i 1.06476i 0.846505 + 0.532381i \(0.178703\pi\)
−0.846505 + 0.532381i \(0.821297\pi\)
\(312\) 0 0
\(313\) −391.075 −1.24944 −0.624721 0.780848i \(-0.714787\pi\)
−0.624721 + 0.780848i \(0.714787\pi\)
\(314\) 251.005 251.005i 0.799380 0.799380i
\(315\) 317.676 1.00849
\(316\) 15.9706i 0.0505400i
\(317\) 322.964 322.964i 1.01881 1.01881i 0.0189927 0.999820i \(-0.493954\pi\)
0.999820 0.0189927i \(-0.00604594\pi\)
\(318\) 296.404 296.404i 0.932089 0.932089i
\(319\) −105.969 105.969i −0.332191 0.332191i
\(320\) −30.1935 30.1935i −0.0943546 0.0943546i
\(321\) −625.952 −1.95001
\(322\) 289.618i 0.899436i
\(323\) 91.3024 + 91.3024i 0.282670 + 0.282670i
\(324\) 199.117i 0.614558i
\(325\) 0 0
\(326\) −171.940 −0.527424
\(327\) −241.116 + 241.116i −0.737357 + 0.737357i
\(328\) −14.1640 −0.0431829
\(329\) 110.160i 0.334833i
\(330\) 215.131 215.131i 0.651913 0.651913i
\(331\) −346.516 + 346.516i −1.04688 + 1.04688i −0.0480317 + 0.998846i \(0.515295\pi\)
−0.998846 + 0.0480317i \(0.984705\pi\)
\(332\) −71.6686 71.6686i −0.215869 0.215869i
\(333\) 248.889 + 248.889i 0.747413 + 0.747413i
\(334\) −87.5419 −0.262102
\(335\) 32.6246i 0.0973867i
\(336\) −111.649 111.649i −0.332290 0.332290i
\(337\) 498.500i 1.47923i −0.673031 0.739614i \(-0.735008\pi\)
0.673031 0.739614i \(-0.264992\pi\)
\(338\) 0 0
\(339\) 268.843 0.793047
\(340\) 36.8973 36.8973i 0.108521 0.108521i
\(341\) 281.593 0.825785
\(342\) 216.694i 0.633607i
\(343\) 52.8131 52.8131i 0.153974 0.153974i
\(344\) −23.9457 + 23.9457i −0.0696095 + 0.0696095i
\(345\) −289.803 289.803i −0.840009 0.840009i
\(346\) −310.835 310.835i −0.898368 0.898368i
\(347\) −234.625 −0.676153 −0.338076 0.941119i \(-0.609776\pi\)
−0.338076 + 0.941119i \(0.609776\pi\)
\(348\) 110.062i 0.316271i
\(349\) −125.061 125.061i −0.358341 0.358341i 0.504860 0.863201i \(-0.331544\pi\)
−0.863201 + 0.504860i \(0.831544\pi\)
\(350\) 50.6264i 0.144647i
\(351\) 0 0
\(352\) −59.2653 −0.168367
\(353\) 159.033 159.033i 0.450518 0.450518i −0.445009 0.895526i \(-0.646799\pi\)
0.895526 + 0.445009i \(0.146799\pi\)
\(354\) −342.258 −0.966829
\(355\) 305.174i 0.859644i
\(356\) −114.573 + 114.573i −0.321836 + 0.321836i
\(357\) 136.439 136.439i 0.382181 0.382181i
\(358\) 63.3403 + 63.3403i 0.176928 + 0.176928i
\(359\) −290.278 290.278i −0.808574 0.808574i 0.175844 0.984418i \(-0.443735\pi\)
−0.984418 + 0.175844i \(0.943735\pi\)
\(360\) −87.5705 −0.243251
\(361\) 336.770i 0.932881i
\(362\) −186.504 186.504i −0.515205 0.515205i
\(363\) 43.2359i 0.119107i
\(364\) 0 0
\(365\) 96.6115 0.264689
\(366\) −216.504 + 216.504i −0.591542 + 0.591542i
\(367\) −220.744 −0.601481 −0.300741 0.953706i \(-0.597234\pi\)
−0.300741 + 0.953706i \(0.597234\pi\)
\(368\) 79.8362i 0.216946i
\(369\) −20.5400 + 20.5400i −0.0556639 + 0.0556639i
\(370\) 323.879 323.879i 0.875349 0.875349i
\(371\) −558.986 558.986i −1.50670 1.50670i
\(372\) −146.235 146.235i −0.393105 0.393105i
\(373\) −62.1593 −0.166647 −0.0833235 0.996523i \(-0.526553\pi\)
−0.0833235 + 0.996523i \(0.526553\pi\)
\(374\) 72.4238i 0.193647i
\(375\) 312.338 + 312.338i 0.832902 + 0.832902i
\(376\) 30.3667i 0.0807625i
\(377\) 0 0
\(378\) 178.604 0.472497
\(379\) 102.724 102.724i 0.271038 0.271038i −0.558480 0.829518i \(-0.688615\pi\)
0.829518 + 0.558480i \(0.188615\pi\)
\(380\) −281.984 −0.742063
\(381\) 318.509i 0.835982i
\(382\) 182.691 182.691i 0.478250 0.478250i
\(383\) 355.526 355.526i 0.928265 0.928265i −0.0693288 0.997594i \(-0.522086\pi\)
0.997594 + 0.0693288i \(0.0220858\pi\)
\(384\) 30.7773 + 30.7773i 0.0801491 + 0.0801491i
\(385\) −405.714 405.714i −1.05380 1.05380i
\(386\) −128.910 −0.333963
\(387\) 69.4499i 0.179457i
\(388\) −77.5856 77.5856i −0.199963 0.199963i
\(389\) 284.973i 0.732579i −0.930501 0.366289i \(-0.880628\pi\)
0.930501 0.366289i \(-0.119372\pi\)
\(390\) 0 0
\(391\) −97.5621 −0.249519
\(392\) −112.558 + 112.558i −0.287139 + 0.287139i
\(393\) −184.089 −0.468420
\(394\) 305.193i 0.774600i
\(395\) −30.1380 + 30.1380i −0.0762988 + 0.0762988i
\(396\) −85.9439 + 85.9439i −0.217030 + 0.217030i
\(397\) 209.336 + 209.336i 0.527294 + 0.527294i 0.919764 0.392471i \(-0.128380\pi\)
−0.392471 + 0.919764i \(0.628380\pi\)
\(398\) −78.4893 78.4893i −0.197209 0.197209i
\(399\) −1042.72 −2.61333
\(400\) 13.9557i 0.0348892i
\(401\) −171.024 171.024i −0.426494 0.426494i 0.460938 0.887432i \(-0.347513\pi\)
−0.887432 + 0.460938i \(0.847513\pi\)
\(402\) 33.2554i 0.0827248i
\(403\) 0 0
\(404\) 28.1270 0.0696212
\(405\) 375.752 375.752i 0.927782 0.927782i
\(406\) 207.565 0.511245
\(407\) 635.726i 1.56198i
\(408\) −37.6107 + 37.6107i −0.0921830 + 0.0921830i
\(409\) −137.980 + 137.980i −0.337361 + 0.337361i −0.855373 0.518013i \(-0.826672\pi\)
0.518013 + 0.855373i \(0.326672\pi\)
\(410\) 26.7287 + 26.7287i 0.0651920 + 0.0651920i
\(411\) −523.529 523.529i −1.27379 1.27379i
\(412\) −161.680 −0.392426
\(413\) 645.460i 1.56286i
\(414\) 115.775 + 115.775i 0.279650 + 0.279650i
\(415\) 270.490i 0.651784i
\(416\) 0 0
\(417\) −742.859 −1.78144
\(418\) −276.746 + 276.746i −0.662072 + 0.662072i
\(419\) 47.9110 0.114346 0.0571730 0.998364i \(-0.481791\pi\)
0.0571730 + 0.998364i \(0.481791\pi\)
\(420\) 421.385i 1.00330i
\(421\) 477.018 477.018i 1.13306 1.13306i 0.143394 0.989666i \(-0.454198\pi\)
0.989666 0.143394i \(-0.0458016\pi\)
\(422\) 132.398 132.398i 0.313739 0.313739i
\(423\) 44.0365 + 44.0365i 0.104105 + 0.104105i
\(424\) 154.090 + 154.090i 0.363420 + 0.363420i
\(425\) −17.0542 −0.0401276
\(426\) 311.074i 0.730221i
\(427\) 408.303 + 408.303i 0.956214 + 0.956214i
\(428\) 325.410i 0.760304i
\(429\) 0 0
\(430\) 90.3753 0.210175
\(431\) −55.0595 + 55.0595i −0.127748 + 0.127748i −0.768090 0.640342i \(-0.778793\pi\)
0.640342 + 0.768090i \(0.278793\pi\)
\(432\) −49.2340 −0.113968
\(433\) 497.603i 1.14920i 0.818435 + 0.574599i \(0.194842\pi\)
−0.818435 + 0.574599i \(0.805158\pi\)
\(434\) −275.783 + 275.783i −0.635445 + 0.635445i
\(435\) 207.698 207.698i 0.477466 0.477466i
\(436\) −125.348 125.348i −0.287494 0.287494i
\(437\) 372.804 + 372.804i 0.853099 + 0.853099i
\(438\) −98.4795 −0.224839
\(439\) 167.510i 0.381572i 0.981632 + 0.190786i \(0.0611037\pi\)
−0.981632 + 0.190786i \(0.938896\pi\)
\(440\) 111.839 + 111.839i 0.254179 + 0.254179i
\(441\) 326.455i 0.740260i
\(442\) 0 0
\(443\) −443.835 −1.00188 −0.500942 0.865481i \(-0.667013\pi\)
−0.500942 + 0.865481i \(0.667013\pi\)
\(444\) −330.141 + 330.141i −0.743562 + 0.743562i
\(445\) 432.421 0.971733
\(446\) 168.997i 0.378917i
\(447\) 365.813 365.813i 0.818374 0.818374i
\(448\) 58.0425 58.0425i 0.129559 0.129559i
\(449\) 181.585 + 181.585i 0.404421 + 0.404421i 0.879788 0.475366i \(-0.157685\pi\)
−0.475366 + 0.879788i \(0.657685\pi\)
\(450\) 20.2379 + 20.2379i 0.0449731 + 0.0449731i
\(451\) 52.4645 0.116329
\(452\) 139.762i 0.309208i
\(453\) 102.266 + 102.266i 0.225752 + 0.225752i
\(454\) 599.884i 1.32133i
\(455\) 0 0
\(456\) 287.436 0.630342
\(457\) −61.5957 + 61.5957i −0.134783 + 0.134783i −0.771279 0.636497i \(-0.780383\pi\)
0.636497 + 0.771279i \(0.280383\pi\)
\(458\) −316.412 −0.690856
\(459\) 60.1653i 0.131079i
\(460\) 150.658 150.658i 0.327518 0.327518i
\(461\) −349.897 + 349.897i −0.758996 + 0.758996i −0.976140 0.217144i \(-0.930326\pi\)
0.217144 + 0.976140i \(0.430326\pi\)
\(462\) 413.558 + 413.558i 0.895148 + 0.895148i
\(463\) 399.472 + 399.472i 0.862789 + 0.862789i 0.991661 0.128872i \(-0.0411356\pi\)
−0.128872 + 0.991661i \(0.541136\pi\)
\(464\) −57.2175 −0.123314
\(465\) 551.917i 1.18692i
\(466\) −163.030 163.030i −0.349850 0.349850i
\(467\) 409.816i 0.877550i 0.898597 + 0.438775i \(0.144587\pi\)
−0.898597 + 0.438775i \(0.855413\pi\)
\(468\) 0 0
\(469\) −62.7159 −0.133723
\(470\) 57.3048 57.3048i 0.121925 0.121925i
\(471\) 965.657 2.05023
\(472\) 177.927i 0.376965i
\(473\) 88.6966 88.6966i 0.187519 0.187519i
\(474\) 30.7208 30.7208i 0.0648118 0.0648118i
\(475\) 65.1676 + 65.1676i 0.137195 + 0.137195i
\(476\) 70.9296 + 70.9296i 0.149012 + 0.149012i
\(477\) 446.909 0.936917
\(478\) 370.910i 0.775962i
\(479\) −376.568 376.568i −0.786153 0.786153i 0.194708 0.980861i \(-0.437624\pi\)
−0.980861 + 0.194708i \(0.937624\pi\)
\(480\) 116.159i 0.241998i
\(481\) 0 0
\(482\) −642.477 −1.33294
\(483\) 557.104 557.104i 1.15342 1.15342i
\(484\) −22.4768 −0.0464397
\(485\) 292.822i 0.603757i
\(486\) −272.240 + 272.240i −0.560165 + 0.560165i
\(487\) −476.048 + 476.048i −0.977512 + 0.977512i −0.999753 0.0222407i \(-0.992920\pi\)
0.0222407 + 0.999753i \(0.492920\pi\)
\(488\) −112.553 112.553i −0.230641 0.230641i
\(489\) −330.740 330.740i −0.676361 0.676361i
\(490\) 424.816 0.866972
\(491\) 117.456i 0.239219i 0.992821 + 0.119609i \(0.0381642\pi\)
−0.992821 + 0.119609i \(0.961836\pi\)
\(492\) −27.2455 27.2455i −0.0553771 0.0553771i
\(493\) 69.9214i 0.141828i
\(494\) 0 0
\(495\) 324.368 0.655289
\(496\) 76.0223 76.0223i 0.153271 0.153271i
\(497\) −586.652 −1.18039
\(498\) 275.720i 0.553655i
\(499\) −155.387 + 155.387i −0.311396 + 0.311396i −0.845450 0.534054i \(-0.820668\pi\)
0.534054 + 0.845450i \(0.320668\pi\)
\(500\) −162.374 + 162.374i −0.324747 + 0.324747i
\(501\) −168.394 168.394i −0.336116 0.336116i
\(502\) −438.996 438.996i −0.874495 0.874495i
\(503\) 325.036 0.646196 0.323098 0.946366i \(-0.395276\pi\)
0.323098 + 0.946366i \(0.395276\pi\)
\(504\) 168.342i 0.334011i
\(505\) −53.0782 53.0782i −0.105105 0.105105i
\(506\) 295.720i 0.584426i
\(507\) 0 0
\(508\) 165.582 0.325948
\(509\) −410.842 + 410.842i −0.807154 + 0.807154i −0.984202 0.177048i \(-0.943345\pi\)
0.177048 + 0.984202i \(0.443345\pi\)
\(510\) 141.950 0.278333
\(511\) 185.722i 0.363447i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −229.904 + 229.904i −0.448155 + 0.448155i
\(514\) 437.208 + 437.208i 0.850599 + 0.850599i
\(515\) 305.104 + 305.104i 0.592436 + 0.592436i
\(516\) −92.1227 −0.178532
\(517\) 112.481i 0.217564i
\(518\) 622.610 + 622.610i 1.20195 + 1.20195i
\(519\) 1195.83i 2.30411i
\(520\) 0 0
\(521\) 400.067 0.767883 0.383942 0.923357i \(-0.374566\pi\)
0.383942 + 0.923357i \(0.374566\pi\)
\(522\) −82.9743 + 82.9743i −0.158955 + 0.158955i
\(523\) 468.671 0.896120 0.448060 0.894004i \(-0.352115\pi\)
0.448060 + 0.894004i \(0.352115\pi\)
\(524\) 95.7013i 0.182636i
\(525\) 97.3839 97.3839i 0.185493 0.185493i
\(526\) 287.959 287.959i 0.547451 0.547451i
\(527\) 92.9014 + 92.9014i 0.176283 + 0.176283i
\(528\) −114.001 114.001i −0.215912 0.215912i
\(529\) 130.636 0.246950
\(530\) 581.564i 1.09729i
\(531\) −258.023 258.023i −0.485918 0.485918i
\(532\) 542.073i 1.01893i
\(533\) 0 0
\(534\) −440.782 −0.825435
\(535\) −614.079 + 614.079i −1.14781 + 1.14781i
\(536\) 17.2883 0.0322542
\(537\) 243.680i 0.453781i
\(538\) −343.400 + 343.400i −0.638290 + 0.638290i
\(539\) 416.925 416.925i 0.773516 0.773516i
\(540\) 92.9090 + 92.9090i 0.172054 + 0.172054i
\(541\) −155.599 155.599i −0.287614 0.287614i 0.548522 0.836136i \(-0.315191\pi\)
−0.836136 + 0.548522i \(0.815191\pi\)
\(542\) 11.7486 0.0216764
\(543\) 717.511i 1.32138i
\(544\) −19.5524 19.5524i −0.0359420 0.0359420i
\(545\) 473.085i 0.868045i
\(546\) 0 0
\(547\) 858.888 1.57018 0.785090 0.619382i \(-0.212617\pi\)
0.785090 + 0.619382i \(0.212617\pi\)
\(548\) 272.164 272.164i 0.496649 0.496649i
\(549\) −326.439 −0.594606
\(550\) 51.6929i 0.0939871i
\(551\) −267.184 + 267.184i −0.484907 + 0.484907i
\(552\) −153.571 + 153.571i −0.278209 + 0.278209i
\(553\) −57.9360 57.9360i −0.104767 0.104767i
\(554\) 444.247 + 444.247i 0.801891 + 0.801891i
\(555\) 1246.01 2.24507
\(556\) 386.186i 0.694578i
\(557\) 377.023 + 377.023i 0.676881 + 0.676881i 0.959293 0.282412i \(-0.0911345\pi\)
−0.282412 + 0.959293i \(0.591135\pi\)
\(558\) 220.489i 0.395141i
\(559\) 0 0
\(560\) −219.063 −0.391184
\(561\) 139.313 139.313i 0.248330 0.248330i
\(562\) −327.357 −0.582486
\(563\) 434.624i 0.771979i −0.922503 0.385990i \(-0.873860\pi\)
0.922503 0.385990i \(-0.126140\pi\)
\(564\) −58.4128 + 58.4128i −0.103569 + 0.103569i
\(565\) 263.743 263.743i 0.466803 0.466803i
\(566\) −464.139 464.139i −0.820034 0.820034i
\(567\) 722.327 + 722.327i 1.27395 + 1.27395i
\(568\) 161.716 0.284712
\(569\) 332.271i 0.583955i −0.956425 0.291978i \(-0.905687\pi\)
0.956425 0.291978i \(-0.0943133\pi\)
\(570\) −542.418 542.418i −0.951611 0.951611i
\(571\) 555.806i 0.973391i 0.873572 + 0.486696i \(0.161798\pi\)
−0.873572 + 0.486696i \(0.838202\pi\)
\(572\) 0 0
\(573\) 702.843 1.22660
\(574\) −51.3821 + 51.3821i −0.0895158 + 0.0895158i
\(575\) −69.6354 −0.121105
\(576\) 46.4050i 0.0805643i
\(577\) −287.753 + 287.753i −0.498705 + 0.498705i −0.911035 0.412330i \(-0.864715\pi\)
0.412330 + 0.911035i \(0.364715\pi\)
\(578\) −265.106 + 265.106i −0.458662 + 0.458662i
\(579\) −247.968 247.968i −0.428269 0.428269i
\(580\) 107.975 + 107.975i 0.186163 + 0.186163i
\(581\) −519.978 −0.894971
\(582\) 298.484i 0.512859i
\(583\) −570.762 570.762i −0.979008 0.979008i
\(584\) 51.1960i 0.0876644i
\(585\) 0 0
\(586\) 89.8951 0.153405
\(587\) 473.776 473.776i 0.807114 0.807114i −0.177082 0.984196i \(-0.556666\pi\)
0.984196 + 0.177082i \(0.0566657\pi\)
\(588\) −433.030 −0.736446
\(589\) 709.990i 1.20542i
\(590\) −335.765 + 335.765i −0.569094 + 0.569094i
\(591\) −587.062 + 587.062i −0.993337 + 0.993337i
\(592\) −171.629 171.629i −0.289913 0.289913i
\(593\) 69.0570 + 69.0570i 0.116454 + 0.116454i 0.762932 0.646479i \(-0.223759\pi\)
−0.646479 + 0.762932i \(0.723759\pi\)
\(594\) 182.366 0.307014
\(595\) 267.701i 0.449918i
\(596\) 190.173 + 190.173i 0.319082 + 0.319082i
\(597\) 301.961i 0.505797i
\(598\) 0 0
\(599\) 461.140 0.769850 0.384925 0.922948i \(-0.374227\pi\)
0.384925 + 0.922948i \(0.374227\pi\)
\(600\) −26.8448 + 26.8448i −0.0447414 + 0.0447414i
\(601\) 176.162 0.293115 0.146558 0.989202i \(-0.453181\pi\)
0.146558 + 0.989202i \(0.453181\pi\)
\(602\) 173.733i 0.288594i
\(603\) 25.0707 25.0707i 0.0415766 0.0415766i
\(604\) −53.1643 + 53.1643i −0.0880203 + 0.0880203i
\(605\) 42.4158 + 42.4158i 0.0701087 + 0.0701087i
\(606\) 54.1045 + 54.1045i 0.0892813 + 0.0892813i
\(607\) −315.414 −0.519628 −0.259814 0.965659i \(-0.583661\pi\)
−0.259814 + 0.965659i \(0.583661\pi\)
\(608\) 149.428i 0.245769i
\(609\) 399.269 + 399.269i 0.655613 + 0.655613i
\(610\) 424.795i 0.696385i
\(611\) 0 0
\(612\) −56.7082 −0.0926605
\(613\) 638.354 638.354i 1.04136 1.04136i 0.0422542 0.999107i \(-0.486546\pi\)
0.999107 0.0422542i \(-0.0134539\pi\)
\(614\) 134.279 0.218695
\(615\) 102.830i 0.167203i
\(616\) −214.994 + 214.994i −0.349016 + 0.349016i
\(617\) 483.018 483.018i 0.782849 0.782849i −0.197461 0.980311i \(-0.563270\pi\)
0.980311 + 0.197461i \(0.0632697\pi\)
\(618\) −311.004 311.004i −0.503242 0.503242i
\(619\) 413.378 + 413.378i 0.667816 + 0.667816i 0.957210 0.289394i \(-0.0934538\pi\)
−0.289394 + 0.957210i \(0.593454\pi\)
\(620\) −286.922 −0.462778
\(621\) 245.666i 0.395597i
\(622\) −331.141 331.141i −0.532381 0.532381i
\(623\) 831.267i 1.33430i
\(624\) 0 0
\(625\) 700.050 1.12008
\(626\) 391.075 391.075i 0.624721 0.624721i
\(627\) −1064.69 −1.69806
\(628\) 502.010i 0.799380i
\(629\) 209.735 209.735i 0.333442 0.333442i
\(630\) −317.676 + 317.676i −0.504247 + 0.504247i
\(631\) −1.18650 1.18650i −0.00188035 0.00188035i 0.706166 0.708046i \(-0.250423\pi\)
−0.708046 + 0.706166i \(0.750423\pi\)
\(632\) 15.9706 + 15.9706i 0.0252700 + 0.0252700i
\(633\) 509.356 0.804670
\(634\) 645.927i 1.01881i
\(635\) −312.468 312.468i −0.492075 0.492075i
\(636\) 592.809i 0.932089i
\(637\) 0 0
\(638\) 211.938 0.332191
\(639\) 234.514 234.514i 0.367002 0.367002i
\(640\) 60.3869 0.0943546
\(641\) 1227.53i 1.91502i 0.288406 + 0.957508i \(0.406875\pi\)
−0.288406 + 0.957508i \(0.593125\pi\)
\(642\) 625.952 625.952i 0.975003 0.975003i
\(643\) 426.567 426.567i 0.663401 0.663401i −0.292779 0.956180i \(-0.594580\pi\)
0.956180 + 0.292779i \(0.0945801\pi\)
\(644\) 289.618 + 289.618i 0.449718 + 0.449718i
\(645\) 173.844 + 173.844i 0.269526 + 0.269526i
\(646\) −182.605 −0.282670
\(647\) 876.797i 1.35517i 0.735443 + 0.677587i \(0.236974\pi\)
−0.735443 + 0.677587i \(0.763026\pi\)
\(648\) −199.117 199.117i −0.307279 0.307279i
\(649\) 659.057i 1.01550i
\(650\) 0 0
\(651\) −1060.98 −1.62977
\(652\) 171.940 171.940i 0.263712 0.263712i
\(653\) 150.361 0.230261 0.115131 0.993350i \(-0.463271\pi\)
0.115131 + 0.993350i \(0.463271\pi\)
\(654\) 482.232i 0.737357i
\(655\) −180.597 + 180.597i −0.275721 + 0.275721i
\(656\) 14.1640 14.1640i 0.0215914 0.0215914i
\(657\) −74.2422 74.2422i −0.113002 0.113002i
\(658\) 110.160 + 110.160i 0.167416 + 0.167416i
\(659\) 873.541 1.32556 0.662778 0.748816i \(-0.269377\pi\)
0.662778 + 0.748816i \(0.269377\pi\)
\(660\) 430.262i 0.651913i
\(661\) 336.481 + 336.481i 0.509048 + 0.509048i 0.914234 0.405186i \(-0.132793\pi\)
−0.405186 + 0.914234i \(0.632793\pi\)
\(662\) 693.033i 1.04688i
\(663\) 0 0
\(664\) 143.337 0.215869
\(665\) −1022.94 + 1022.94i −1.53826 + 1.53826i
\(666\) −497.777 −0.747413
\(667\) 285.502i 0.428038i
\(668\) 87.5419 87.5419i 0.131051 0.131051i
\(669\) 325.079 325.079i 0.485918 0.485918i
\(670\) −32.6246 32.6246i −0.0486934 0.0486934i
\(671\) 416.905 + 416.905i 0.621318 + 0.621318i
\(672\) 223.299 0.332290
\(673\) 1105.76i 1.64302i −0.570191 0.821512i \(-0.693131\pi\)
0.570191 0.821512i \(-0.306869\pi\)
\(674\) 498.500 + 498.500i 0.739614 + 0.739614i
\(675\) 42.9433i 0.0636197i
\(676\) 0 0
\(677\) 474.341 0.700651 0.350326 0.936628i \(-0.386071\pi\)
0.350326 + 0.936628i \(0.386071\pi\)
\(678\) −268.843 + 268.843i −0.396524 + 0.396524i
\(679\) −562.908 −0.829025
\(680\) 73.7945i 0.108521i
\(681\) −1153.93 + 1153.93i −1.69446 + 1.69446i
\(682\) −281.593 + 281.593i −0.412892 + 0.412892i
\(683\) 741.412 + 741.412i 1.08552 + 1.08552i 0.995983 + 0.0895398i \(0.0285396\pi\)
0.0895398 + 0.995983i \(0.471460\pi\)
\(684\) 216.694 + 216.694i 0.316804 + 0.316804i
\(685\) −1027.20 −1.49956
\(686\) 105.626i 0.153974i
\(687\) −608.644 608.644i −0.885945 0.885945i
\(688\) 47.8913i 0.0696095i
\(689\) 0 0
\(690\) 579.606 0.840009
\(691\) 286.793 286.793i 0.415040 0.415040i −0.468450 0.883490i \(-0.655187\pi\)
0.883490 + 0.468450i \(0.155187\pi\)
\(692\) 621.671 0.898368
\(693\) 623.550i 0.899784i
\(694\) 234.625 234.625i 0.338076 0.338076i
\(695\) −728.768 + 728.768i −1.04859 + 1.04859i
\(696\) −110.062 110.062i −0.158136 0.158136i
\(697\) 17.3088 + 17.3088i 0.0248333 + 0.0248333i
\(698\) 250.122 0.358341
\(699\) 627.203i 0.897287i
\(700\) 50.6264 + 50.6264i 0.0723234 + 0.0723234i
\(701\) 322.739i 0.460398i −0.973144 0.230199i \(-0.926062\pi\)
0.973144 0.230199i \(-0.0739378\pi\)
\(702\) 0 0
\(703\) −1602.88 −2.28006
\(704\) 59.2653 59.2653i 0.0841836 0.0841836i
\(705\) 220.460 0.312710
\(706\) 318.065i 0.450518i
\(707\) 102.035 102.035i 0.144321 0.144321i
\(708\) 342.258 342.258i 0.483415 0.483415i
\(709\) −68.9061 68.9061i −0.0971877 0.0971877i 0.656841 0.754029i \(-0.271892\pi\)
−0.754029 + 0.656841i \(0.771892\pi\)
\(710\) −305.174 305.174i −0.429822 0.429822i
\(711\) 46.3198 0.0651475
\(712\) 229.147i 0.321836i
\(713\) 379.333 + 379.333i 0.532024 + 0.532024i
\(714\) 272.877i 0.382181i
\(715\) 0 0
\(716\) −126.681 −0.176928
\(717\) −713.475 + 713.475i −0.995083 + 0.995083i
\(718\) 580.556 0.808574
\(719\) 892.454i 1.24124i −0.784110 0.620622i \(-0.786880\pi\)
0.784110 0.620622i \(-0.213120\pi\)
\(720\) 87.5705 87.5705i 0.121626 0.121626i
\(721\) −586.519 + 586.519i −0.813479 + 0.813479i
\(722\) 336.770 + 336.770i 0.466440 + 0.466440i
\(723\) −1235.86 1235.86i −1.70934 1.70934i
\(724\) 373.008 0.515205
\(725\) 49.9067i 0.0688369i
\(726\) −43.2359 43.2359i −0.0595536 0.0595536i
\(727\) 1093.66i 1.50435i −0.658964 0.752175i \(-0.729005\pi\)
0.658964 0.752175i \(-0.270995\pi\)
\(728\) 0 0
\(729\) −151.327 −0.207581
\(730\) −96.6115 + 96.6115i −0.132345 + 0.132345i
\(731\) 58.5245 0.0800609
\(732\) 433.009i 0.591542i
\(733\) −136.804 + 136.804i −0.186636 + 0.186636i −0.794240 0.607604i \(-0.792131\pi\)
0.607604 + 0.794240i \(0.292131\pi\)
\(734\) 220.744 220.744i 0.300741 0.300741i
\(735\) 817.168 + 817.168i 1.11179 + 1.11179i
\(736\) −79.8362 79.8362i −0.108473 0.108473i
\(737\) −64.0371 −0.0868889
\(738\) 41.0800i 0.0556639i
\(739\) 568.031 + 568.031i 0.768649 + 0.768649i 0.977869 0.209220i \(-0.0670924\pi\)
−0.209220 + 0.977869i \(0.567092\pi\)
\(740\) 647.758i 0.875349i
\(741\) 0 0
\(742\) 1117.97 1.50670
\(743\) −505.313 + 505.313i −0.680098 + 0.680098i −0.960022 0.279924i \(-0.909691\pi\)
0.279924 + 0.960022i \(0.409691\pi\)
\(744\) 292.470 0.393105
\(745\) 717.748i 0.963421i
\(746\) 62.1593 62.1593i 0.0833235 0.0833235i
\(747\) 207.861 207.861i 0.278261 0.278261i
\(748\) 72.4238 + 72.4238i 0.0968233 + 0.0968233i
\(749\) −1180.48 1180.48i −1.57607 1.57607i
\(750\) −624.677 −0.832902
\(751\) 24.3942i 0.0324823i −0.999868 0.0162412i \(-0.994830\pi\)
0.999868 0.0162412i \(-0.00516995\pi\)
\(752\) −30.3667 30.3667i −0.0403813 0.0403813i
\(753\) 1688.89i 2.24288i
\(754\) 0 0
\(755\) 200.652 0.265764
\(756\) −178.604 + 178.604i −0.236249 + 0.236249i
\(757\) −1025.22 −1.35433 −0.677163 0.735833i \(-0.736791\pi\)
−0.677163 + 0.735833i \(0.736791\pi\)
\(758\) 205.447i 0.271038i
\(759\) 568.840 568.840i 0.749460 0.749460i
\(760\) 281.984 281.984i 0.371031 0.371031i
\(761\) 272.647 + 272.647i 0.358275 + 0.358275i 0.863177 0.504902i \(-0.168471\pi\)
−0.504902 + 0.863177i \(0.668471\pi\)
\(762\) 318.509 + 318.509i 0.417991 + 0.417991i
\(763\) −909.436 −1.19192
\(764\) 365.383i 0.478250i
\(765\) 107.014 + 107.014i 0.139887 + 0.139887i
\(766\) 711.051i 0.928265i
\(767\) 0 0
\(768\) −61.5545 −0.0801491
\(769\) −171.616 + 171.616i −0.223168 + 0.223168i −0.809831 0.586663i \(-0.800441\pi\)
0.586663 + 0.809831i \(0.300441\pi\)
\(770\) 811.427 1.05380
\(771\) 1682.01i 2.18159i
\(772\) 128.910 128.910i 0.166981 0.166981i
\(773\) −367.857 + 367.857i −0.475883 + 0.475883i −0.903812 0.427929i \(-0.859243\pi\)
0.427929 + 0.903812i \(0.359243\pi\)
\(774\) −69.4499 69.4499i −0.0897286 0.0897286i
\(775\) 66.3089 + 66.3089i 0.0855598 + 0.0855598i
\(776\) 155.171 0.199963
\(777\) 2395.28i 3.08273i
\(778\) 284.973 + 284.973i 0.366289 + 0.366289i
\(779\) 132.281i 0.169808i
\(780\) 0 0
\(781\) −599.010 −0.766978
\(782\) 97.5621 97.5621i 0.124760 0.124760i
\(783\) 176.065 0.224860
\(784\) 225.117i 0.287139i
\(785\) 947.340 947.340i 1.20680 1.20680i
\(786\) 184.089 184.089i 0.234210 0.234210i
\(787\) −1028.17 1028.17i −1.30644 1.30644i −0.923965 0.382478i \(-0.875071\pi\)
−0.382478 0.923965i \(-0.624929\pi\)
\(788\) −305.193 305.193i −0.387300 0.387300i
\(789\) 1107.83 1.40409
\(790\) 60.2761i 0.0762988i
\(791\) 507.008 + 507.008i 0.640971 + 0.640971i
\(792\) 171.888i 0.217030i
\(793\) 0 0
\(794\) −418.671 −0.527294
\(795\) 1118.68 1118.68i 1.40715 1.40715i
\(796\) 156.979 0.197209
\(797\) 472.216i 0.592491i 0.955112 + 0.296246i \(0.0957347\pi\)
−0.955112 + 0.296246i \(0.904265\pi\)
\(798\) 1042.72 1042.72i 1.30667 1.30667i
\(799\) 37.1090 37.1090i 0.0464443 0.0464443i
\(800\) −13.9557 13.9557i −0.0174446 0.0174446i
\(801\) −332.299 332.299i −0.414855 0.414855i
\(802\) 342.048 0.426494
\(803\) 189.634i 0.236157i
\(804\) 33.2554 + 33.2554i 0.0413624 + 0.0413624i
\(805\) 1093.07i 1.35785i
\(806\) 0 0
\(807\) −1321.11 −1.63707
\(808\) −28.1270 + 28.1270i −0.0348106 + 0.0348106i
\(809\) 954.431 1.17977 0.589883 0.807489i \(-0.299174\pi\)
0.589883 + 0.807489i \(0.299174\pi\)
\(810\) 751.503i 0.927782i
\(811\) −643.215 + 643.215i −0.793114 + 0.793114i −0.981999 0.188885i \(-0.939513\pi\)
0.188885 + 0.981999i \(0.439513\pi\)
\(812\) −207.565 + 207.565i −0.255622 + 0.255622i
\(813\) 22.5993 + 22.5993i 0.0277975 + 0.0277975i
\(814\) 635.726 + 635.726i 0.780990 + 0.780990i
\(815\) −648.934 −0.796238
\(816\) 75.2214i 0.0921830i
\(817\) −223.634 223.634i −0.273726 0.273726i
\(818\) 275.961i 0.337361i
\(819\) 0 0
\(820\) −53.4574 −0.0651920
\(821\) −609.239 + 609.239i −0.742069 + 0.742069i −0.972976 0.230907i \(-0.925831\pi\)
0.230907 + 0.972976i \(0.425831\pi\)
\(822\) 1047.06 1.27379
\(823\) 747.037i 0.907700i −0.891078 0.453850i \(-0.850050\pi\)
0.891078 0.453850i \(-0.149950\pi\)
\(824\) 161.680 161.680i 0.196213 0.196213i
\(825\) 99.4354 99.4354i 0.120528 0.120528i
\(826\) −645.460 645.460i −0.781428 0.781428i
\(827\) 1064.80 + 1064.80i 1.28755 + 1.28755i 0.936273 + 0.351272i \(0.114251\pi\)
0.351272 + 0.936273i \(0.385749\pi\)
\(828\) −231.550 −0.279650
\(829\) 127.571i 0.153886i −0.997036 0.0769429i \(-0.975484\pi\)
0.997036 0.0769429i \(-0.0245159\pi\)
\(830\) −270.490 270.490i −0.325892 0.325892i
\(831\) 1709.09i 2.05667i
\(832\) 0 0
\(833\) 275.099 0.330251
\(834\) 742.859 742.859i 0.890718 0.890718i
\(835\) −330.399 −0.395688
\(836\) 553.492i 0.662072i
\(837\) −233.930 + 233.930i −0.279486 + 0.279486i
\(838\) −47.9110 + 47.9110i −0.0571730 + 0.0571730i
\(839\) 335.660 + 335.660i 0.400071 + 0.400071i 0.878258 0.478187i \(-0.158706\pi\)
−0.478187 + 0.878258i \(0.658706\pi\)
\(840\) −421.385 421.385i −0.501649 0.501649i
\(841\) −636.385 −0.756700
\(842\) 954.036i 1.13306i
\(843\) −629.697 629.697i −0.746972 0.746972i
\(844\) 264.796i 0.313739i
\(845\) 0 0
\(846\) −88.0730 −0.104105
\(847\) −81.5381 + 81.5381i −0.0962670 + 0.0962670i
\(848\) −308.180 −0.363420
\(849\) 1785.62i 2.10320i
\(850\) 17.0542 17.0542i 0.0200638 0.0200638i
\(851\) 856.386 856.386i 1.00633 1.00633i
\(852\) 311.074 + 311.074i 0.365111 + 0.365111i
\(853\) −425.319 425.319i −0.498616 0.498616i 0.412391 0.911007i \(-0.364694\pi\)
−0.911007 + 0.412391i \(0.864694\pi\)
\(854\) −816.606 −0.956214
\(855\) 817.841i 0.956540i
\(856\) 325.410 + 325.410i 0.380152 + 0.380152i
\(857\) 48.5237i 0.0566204i −0.999599 0.0283102i \(-0.990987\pi\)
0.999599 0.0283102i \(-0.00901262\pi\)
\(858\) 0 0
\(859\) 165.922 0.193157 0.0965787 0.995325i \(-0.469210\pi\)
0.0965787 + 0.995325i \(0.469210\pi\)
\(860\) −90.3753 + 90.3753i −0.105088 + 0.105088i
\(861\) −197.675 −0.229588
\(862\) 110.119i 0.127748i
\(863\) −376.277 + 376.277i −0.436010 + 0.436010i −0.890667 0.454657i \(-0.849762\pi\)
0.454657 + 0.890667i \(0.349762\pi\)
\(864\) 49.2340 49.2340i 0.0569838 0.0569838i
\(865\) −1173.15 1173.15i −1.35624 1.35624i
\(866\) −497.603 497.603i −0.574599 0.574599i
\(867\) −1019.91 −1.17636
\(868\) 551.566i 0.635445i
\(869\) −59.1565 59.1565i −0.0680742 0.0680742i
\(870\) 415.395i 0.477466i
\(871\) 0 0
\(872\) 250.695 0.287494
\(873\) 225.023 225.023i 0.257758 0.257758i
\(874\) −745.609 −0.853099
\(875\) 1178.07i 1.34637i
\(876\) 98.4795 98.4795i 0.112420 0.112420i
\(877\) 903.857 903.857i 1.03062 1.03062i 0.0311071 0.999516i \(-0.490097\pi\)
0.999516 0.0311071i \(-0.00990331\pi\)
\(878\) −167.510 167.510i −0.190786 0.190786i
\(879\) 172.920 + 172.920i 0.196724 + 0.196724i
\(880\) −223.678 −0.254179
\(881\) 1248.35i 1.41697i −0.705727 0.708484i \(-0.749379\pi\)
0.705727 0.708484i \(-0.250621\pi\)
\(882\) −326.455 326.455i −0.370130 0.370130i
\(883\) 1217.43i 1.37874i 0.724408 + 0.689371i \(0.242113\pi\)
−0.724408 + 0.689371i \(0.757887\pi\)
\(884\) 0 0
\(885\) −1291.74 −1.45960
\(886\) 443.835 443.835i 0.500942 0.500942i
\(887\) −31.0970 −0.0350587 −0.0175293 0.999846i \(-0.505580\pi\)
−0.0175293 + 0.999846i \(0.505580\pi\)
\(888\) 660.283i 0.743562i
\(889\) 600.673 600.673i 0.675673 0.675673i
\(890\) −432.421 + 432.421i −0.485867 + 0.485867i
\(891\) 737.544 + 737.544i 0.827771 + 0.827771i
\(892\) 168.997 + 168.997i 0.189459 + 0.189459i
\(893\) −283.602 −0.317583
\(894\) 731.626i 0.818374i
\(895\) 239.058 + 239.058i 0.267104 + 0.267104i
\(896\) 116.085i 0.129559i
\(897\) 0 0
\(898\) −363.170 −0.404421
\(899\) −271.863 + 271.863i −0.302406 + 0.302406i
\(900\) −40.4758 −0.0449731
\(901\) 376.605i 0.417985i
\(902\) −52.4645 + 52.4645i −0.0581646 + 0.0581646i
\(903\) −334.190 + 334.190i −0.370088 + 0.370088i
\(904\) −139.762 139.762i −0.154604 0.154604i
\(905\) −703.901 703.901i −0.777791 0.777791i
\(906\) −204.531 −0.225752
\(907\) 1539.44i 1.69728i 0.528968 + 0.848642i \(0.322579\pi\)
−0.528968 + 0.848642i \(0.677421\pi\)
\(908\) −599.884 599.884i −0.660666 0.660666i
\(909\) 81.5771i 0.0897438i
\(910\) 0 0
\(911\) −148.518 −0.163027 −0.0815136 0.996672i \(-0.525975\pi\)
−0.0815136 + 0.996672i \(0.525975\pi\)
\(912\) −287.436 + 287.436i −0.315171 + 0.315171i
\(913\) −530.932 −0.581525
\(914\) 123.191i 0.134783i
\(915\) −817.127 + 817.127i −0.893035 + 0.893035i
\(916\) 316.412 316.412i 0.345428 0.345428i
\(917\) −347.171 347.171i −0.378595 0.378595i
\(918\) 60.1653 + 60.1653i 0.0655395 + 0.0655395i
\(919\) −1750.17 −1.90442 −0.952212 0.305438i \(-0.901197\pi\)
−0.952212 + 0.305438i \(0.901197\pi\)
\(920\) 301.316i 0.327518i
\(921\) 258.296 + 258.296i 0.280452 + 0.280452i
\(922\) 699.794i 0.758996i
\(923\) 0 0
\(924\) −827.116 −0.895148
\(925\) 149.700 149.700i 0.161837 0.161837i
\(926\) −798.943 −0.862789
\(927\) 468.922i 0.505849i
\(928\) 57.2175 57.2175i 0.0616568 0.0616568i
\(929\) 696.265 696.265i 0.749478 0.749478i −0.224903 0.974381i \(-0.572207\pi\)
0.974381 + 0.224903i \(0.0722066\pi\)
\(930\) −551.917 551.917i −0.593460 0.593460i
\(931\) −1051.21 1051.21i −1.12912 1.12912i
\(932\) 326.061 0.349850
\(933\) 1273.95i 1.36544i
\(934\) −409.816 409.816i −0.438775 0.438775i
\(935\) 273.341i 0.292343i
\(936\) 0 0
\(937\) 835.853 0.892052 0.446026 0.895020i \(-0.352839\pi\)
0.446026 + 0.895020i \(0.352839\pi\)
\(938\) 62.7159 62.7159i 0.0668613 0.0668613i
\(939\) 1504.53 1.60227
\(940\) 114.610i 0.121925i
\(941\) −759.883 + 759.883i −0.807527 + 0.807527i −0.984259 0.176732i \(-0.943447\pi\)
0.176732 + 0.984259i \(0.443447\pi\)
\(942\) −965.657 + 965.657i −1.02511 + 1.02511i
\(943\) 70.6749 + 70.6749i 0.0749468 + 0.0749468i
\(944\) 177.927 + 177.927i 0.188482 + 0.188482i
\(945\) 674.084 0.713317
\(946\) 177.393i 0.187519i
\(947\) −816.039 816.039i −0.861709 0.861709i 0.129827 0.991537i \(-0.458558\pi\)
−0.991537 + 0.129827i \(0.958558\pi\)
\(948\) 61.4415i 0.0648118i
\(949\) 0 0
\(950\) −130.335 −0.137195
\(951\) −1242.49 + 1242.49i −1.30651 + 1.30651i
\(952\) −141.859 −0.149012
\(953\) 1628.14i 1.70844i −0.519914 0.854219i \(-0.674036\pi\)
0.519914 0.854219i \(-0.325964\pi\)
\(954\) −446.909 + 446.909i −0.468458 + 0.468458i
\(955\) 689.511 689.511i 0.722001 0.722001i
\(956\) −370.910 370.910i −0.387981 0.387981i
\(957\) 407.680 + 407.680i 0.425998 + 0.425998i
\(958\) 753.135 0.786153
\(959\) 1974.63i 2.05906i
\(960\) 116.159 + 116.159i 0.120999 + 0.120999i
\(961\) 238.576i 0.248258i
\(962\) 0 0
\(963\) 943.791 0.980053
\(964\) 642.477 642.477i 0.666470 0.666470i
\(965\) −486.529 −0.504175
\(966\) 1114.21i 1.15342i
\(967\) 1097.29 1097.29i 1.13473 1.13473i 0.145354 0.989380i \(-0.453568\pi\)
0.989380 0.145354i \(-0.0464320\pi\)
\(968\) 22.4768 22.4768i 0.0232198 0.0232198i
\(969\) −351.255 351.255i −0.362492 0.362492i
\(970\) −292.822 292.822i −0.301879 0.301879i
\(971\) 1289.79 1.32831 0.664157 0.747593i \(-0.268791\pi\)
0.664157 + 0.747593i \(0.268791\pi\)
\(972\) 544.481i 0.560165i
\(973\) −1400.95 1400.95i −1.43982 1.43982i
\(974\) 952.097i 0.977512i
\(975\) 0 0
\(976\) 225.106 0.230641
\(977\) 1105.01 1105.01i 1.13102 1.13102i 0.141012 0.990008i \(-0.454964\pi\)
0.990008 0.141012i \(-0.0450357\pi\)
\(978\) 661.481 0.676361
\(979\) 848.778i 0.866985i
\(980\) −424.816 + 424.816i −0.433486 + 0.433486i
\(981\) 363.547 363.547i 0.370588 0.370588i
\(982\) −117.456 117.456i −0.119609 0.119609i
\(983\) −79.2765 79.2765i −0.0806475 0.0806475i 0.665632 0.746280i \(-0.268162\pi\)
−0.746280 + 0.665632i \(0.768162\pi\)
\(984\) 54.4911 0.0553771
\(985\) 1151.85i 1.16939i
\(986\) 69.9214 + 69.9214i 0.0709142 + 0.0709142i
\(987\) 423.803i 0.429385i
\(988\) 0 0
\(989\) 238.966 0.241624
\(990\) −324.368 + 324.368i −0.327645 + 0.327645i
\(991\) −203.185 −0.205030 −0.102515 0.994731i \(-0.532689\pi\)
−0.102515 + 0.994731i \(0.532689\pi\)
\(992\) 152.045i 0.153271i
\(993\) 1333.10 1333.10i 1.34250 1.34250i
\(994\) 586.652 586.652i 0.590193 0.590193i
\(995\) −296.233 296.233i −0.297721 0.297721i
\(996\) 275.720 + 275.720i 0.276828 + 0.276828i
\(997\) 1972.04 1.97798 0.988989 0.147987i \(-0.0472792\pi\)
0.988989 + 0.147987i \(0.0472792\pi\)
\(998\) 310.774i 0.311396i
\(999\) 528.123 + 528.123i 0.528651 + 0.528651i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.d.f.239.2 8
13.2 odd 12 26.3.f.b.7.2 8
13.3 even 3 338.3.f.j.19.2 8
13.4 even 6 26.3.f.b.15.2 yes 8
13.5 odd 4 338.3.d.g.99.2 8
13.6 odd 12 338.3.f.h.89.2 8
13.7 odd 12 338.3.f.j.89.2 8
13.8 odd 4 inner 338.3.d.f.99.2 8
13.9 even 3 338.3.f.i.249.2 8
13.10 even 6 338.3.f.h.19.2 8
13.11 odd 12 338.3.f.i.319.2 8
13.12 even 2 338.3.d.g.239.2 8
39.2 even 12 234.3.bb.f.163.1 8
39.17 odd 6 234.3.bb.f.145.1 8
52.15 even 12 208.3.bd.f.33.1 8
52.43 odd 6 208.3.bd.f.145.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.7.2 8 13.2 odd 12
26.3.f.b.15.2 yes 8 13.4 even 6
208.3.bd.f.33.1 8 52.15 even 12
208.3.bd.f.145.1 8 52.43 odd 6
234.3.bb.f.145.1 8 39.17 odd 6
234.3.bb.f.163.1 8 39.2 even 12
338.3.d.f.99.2 8 13.8 odd 4 inner
338.3.d.f.239.2 8 1.1 even 1 trivial
338.3.d.g.99.2 8 13.5 odd 4
338.3.d.g.239.2 8 13.12 even 2
338.3.f.h.19.2 8 13.10 even 6
338.3.f.h.89.2 8 13.6 odd 12
338.3.f.i.249.2 8 13.9 even 3
338.3.f.i.319.2 8 13.11 odd 12
338.3.f.j.19.2 8 13.3 even 3
338.3.f.j.89.2 8 13.7 odd 12