L(s) = 1 | + 2·3-s + 4·7-s − 9-s − 2·11-s + 6·17-s − 6·19-s + 8·21-s + 4·23-s − 6·27-s + 16·29-s + 4·31-s − 4·33-s + 4·37-s + 10·41-s + 20·43-s + 8·47-s + 6·49-s + 12·51-s − 4·53-s − 12·57-s − 4·59-s + 12·61-s − 4·63-s − 14·67-s + 8·69-s − 8·71-s − 6·73-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 1.51·7-s − 1/3·9-s − 0.603·11-s + 1.45·17-s − 1.37·19-s + 1.74·21-s + 0.834·23-s − 1.15·27-s + 2.97·29-s + 0.718·31-s − 0.696·33-s + 0.657·37-s + 1.56·41-s + 3.04·43-s + 1.16·47-s + 6/7·49-s + 1.68·51-s − 0.549·53-s − 1.58·57-s − 0.520·59-s + 1.53·61-s − 0.503·63-s − 1.71·67-s + 0.963·69-s − 0.949·71-s − 0.702·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.111726090\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.111726090\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.733442805360386047773070057264, −8.512390981721874779757555629023, −8.002885861680480060099645078534, −7.908517769372263156576389110181, −7.57020398987145349790689460398, −7.30817477568889959544913289779, −6.41728991618517542853938408251, −6.34551529876477031325507692169, −5.72040429426910827415109590749, −5.50835844302553883161865425778, −4.82853920027608146479707005684, −4.61797870025230947504774040793, −4.23928366970178028955581235898, −3.77900661239747590984609846829, −2.91587557572118846892083833745, −2.86911077703104185558990978449, −2.45643542392718370575384806258, −2.01049395940819560208880248848, −1.00551589642208909555918666507, −0.899314277868807339486377108190,
0.899314277868807339486377108190, 1.00551589642208909555918666507, 2.01049395940819560208880248848, 2.45643542392718370575384806258, 2.86911077703104185558990978449, 2.91587557572118846892083833745, 3.77900661239747590984609846829, 4.23928366970178028955581235898, 4.61797870025230947504774040793, 4.82853920027608146479707005684, 5.50835844302553883161865425778, 5.72040429426910827415109590749, 6.34551529876477031325507692169, 6.41728991618517542853938408251, 7.30817477568889959544913289779, 7.57020398987145349790689460398, 7.908517769372263156576389110181, 8.002885861680480060099645078534, 8.512390981721874779757555629023, 8.733442805360386047773070057264