L(s) = 1 | − 52.5i·3-s + (14.9 − 279. i)5-s + 338. i·7-s − 572.·9-s + 3.02e3·11-s + 2.45e3i·13-s + (−1.46e4 − 785. i)15-s − 8.49e3i·17-s + 4.32e4·19-s + 1.78e4·21-s + 4.45e4i·23-s + (−7.76e4 − 8.34e3i)25-s − 8.48e4i·27-s + 1.29e5·29-s + 2.04e5·31-s + ⋯ |
L(s) = 1 | − 1.12i·3-s + (0.0534 − 0.998i)5-s + 0.373i·7-s − 0.261·9-s + 0.684·11-s + 0.310i·13-s + (−1.12 − 0.0600i)15-s − 0.419i·17-s + 1.44·19-s + 0.419·21-s + 0.763i·23-s + (−0.994 − 0.106i)25-s − 0.829i·27-s + 0.987·29-s + 1.23·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0534 + 0.998i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.0534 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(2.749417701\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.749417701\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-14.9 + 279. i)T \) |
good | 3 | \( 1 + 52.5iT - 2.18e3T^{2} \) |
| 7 | \( 1 - 338. iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.02e3T + 1.94e7T^{2} \) |
| 13 | \( 1 - 2.45e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 8.49e3iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 4.32e4T + 8.93e8T^{2} \) |
| 23 | \( 1 - 4.45e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.29e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.04e5T + 2.75e10T^{2} \) |
| 37 | \( 1 - 4.24e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 8.33e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 6.21e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 8.95e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 5.08e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 1.29e4T + 2.48e12T^{2} \) |
| 61 | \( 1 - 2.51e6T + 3.14e12T^{2} \) |
| 67 | \( 1 + 1.41e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 3.21e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 6.52e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 1.53e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 3.83e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 6.52e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 3.16e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.933207094608792602260647580512, −9.164021715289086224147252007273, −8.205800379295689863062236410685, −7.35081488714279710100003588834, −6.36980092659997886090210429099, −5.35303461202990275915429539663, −4.22422879238924896656159553027, −2.66275766222845806574147838714, −1.36234705649558117268540218896, −0.836607769275188071800291468701,
0.940075784854250444809683392104, 2.65437386188610673240077248254, 3.66604852304094252073673278640, 4.46832251849066558220983456648, 5.75110890477618196264814181648, 6.80212481865425158492491362650, 7.76239885056150860127529261173, 9.068588892505857400654634139573, 9.942794267706397089090480717595, 10.49610199429303387734026826676