L(s) = 1 | − 83.6i·3-s + (−237. + 147. i)5-s + 185. i·7-s − 4.81e3·9-s + 3.56e3·11-s − 6.09e3i·13-s + (1.23e4 + 1.98e4i)15-s + 1.24e4i·17-s + 5.06e4·19-s + 1.55e4·21-s − 1.14e4i·23-s + (3.48e4 − 6.99e4i)25-s + 2.19e5i·27-s + 1.01e5·29-s + 2.90e4·31-s + ⋯ |
L(s) = 1 | − 1.78i·3-s + (−0.850 + 0.526i)5-s + 0.204i·7-s − 2.20·9-s + 0.806·11-s − 0.769i·13-s + (0.941 + 1.52i)15-s + 0.615i·17-s + 1.69·19-s + 0.366·21-s − 0.196i·23-s + (0.446 − 0.894i)25-s + 2.15i·27-s + 0.776·29-s + 0.175·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.526i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.526i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.574198792\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.574198792\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (237. - 147. i)T \) |
good | 3 | \( 1 + 83.6iT - 2.18e3T^{2} \) |
| 7 | \( 1 - 185. iT - 8.23e5T^{2} \) |
| 11 | \( 1 - 3.56e3T + 1.94e7T^{2} \) |
| 13 | \( 1 + 6.09e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 1.24e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 5.06e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + 1.14e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 1.01e5T + 1.72e10T^{2} \) |
| 31 | \( 1 - 2.90e4T + 2.75e10T^{2} \) |
| 37 | \( 1 - 1.49e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 3.74e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 1.74e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 4.28e5iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 1.71e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 + 1.34e5T + 2.48e12T^{2} \) |
| 61 | \( 1 - 1.39e6T + 3.14e12T^{2} \) |
| 67 | \( 1 - 2.60e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 4.91e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 1.19e5iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 4.70e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 9.19e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 6.43e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 1.26e7iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15185119690414391748641416888, −8.632815334396434708004016426920, −7.991645425642458566023729195321, −7.12525621542595213397748765238, −6.49770087695684684415729710623, −5.38107157662990109691057549271, −3.58891093678567826642657072721, −2.63805890681710981305660512848, −1.32714013589441710935654610596, −0.44832960243000669625195613030,
0.961845713744679897653751052412, 3.05680423702925978953488880509, 3.94354485115344401050257979748, 4.63026008000880946116307414342, 5.51415976898761875404783157469, 7.03994711080581731908456989445, 8.267458308211127405825922937840, 9.264192023460179320597409171519, 9.617320301755766315702429140264, 10.83364992395010074077887949450