Properties

Label 16-320e8-1.1-c3e8-0-7
Degree $16$
Conductor $1.100\times 10^{20}$
Sign $1$
Analytic cond. $1.61483\times 10^{10}$
Root an. cond. $4.34518$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 14·5-s − 10·7-s + 2·9-s + 32·13-s + 28·15-s + 44·17-s + 80·19-s − 20·21-s − 230·23-s + 76·25-s + 46·27-s − 140·35-s + 292·37-s + 64·39-s + 932·41-s + 458·43-s + 28·45-s + 766·47-s + 50·49-s + 88·51-s + 892·53-s + 160·57-s + 16·59-s − 2.56e3·61-s − 20·63-s + 448·65-s + ⋯
L(s)  = 1  + 0.384·3-s + 1.25·5-s − 0.539·7-s + 2/27·9-s + 0.682·13-s + 0.481·15-s + 0.627·17-s + 0.965·19-s − 0.207·21-s − 2.08·23-s + 0.607·25-s + 0.327·27-s − 0.676·35-s + 1.29·37-s + 0.262·39-s + 3.55·41-s + 1.62·43-s + 0.0927·45-s + 2.37·47-s + 0.145·49-s + 0.241·51-s + 2.31·53-s + 0.371·57-s + 0.0353·59-s − 5.38·61-s − 0.0399·63-s + 0.854·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{48} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.61483\times 10^{10}\)
Root analytic conductor: \(4.34518\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{48} \cdot 5^{8} ,\ ( \ : [3/2]^{8} ),\ 1 )\)

Particular Values

\(L(2)\) \(\approx\) \(32.84647202\)
\(L(\frac12)\) \(\approx\) \(32.84647202\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 14 T + 24 p T^{2} - 162 p T^{3} + 238 p^{2} T^{4} - 162 p^{4} T^{5} + 24 p^{7} T^{6} - 14 p^{9} T^{7} + p^{12} T^{8} \)
good3 \( 1 - 2 T + 2 T^{2} - 46 T^{3} - 1360 T^{4} + 2602 T^{5} - 1426 T^{6} + 4886 T^{7} + 998398 T^{8} + 4886 p^{3} T^{9} - 1426 p^{6} T^{10} + 2602 p^{9} T^{11} - 1360 p^{12} T^{12} - 46 p^{15} T^{13} + 2 p^{18} T^{14} - 2 p^{21} T^{15} + p^{24} T^{16} \)
7 \( 1 + 10 T + 50 T^{2} - 4258 T^{3} + 38960 T^{4} + 3628286 T^{5} + 43400142 T^{6} + 434163690 T^{7} - 11482214498 T^{8} + 434163690 p^{3} T^{9} + 43400142 p^{6} T^{10} + 3628286 p^{9} T^{11} + 38960 p^{12} T^{12} - 4258 p^{15} T^{13} + 50 p^{18} T^{14} + 10 p^{21} T^{15} + p^{24} T^{16} \)
11 \( 1 - 8524 T^{2} + 34127828 T^{4} - 83173817556 T^{6} + 134411171777782 T^{8} - 83173817556 p^{6} T^{10} + 34127828 p^{12} T^{12} - 8524 p^{18} T^{14} + p^{24} T^{16} \)
13 \( 1 - 32 T + 512 T^{2} - 6528 T^{3} - 3879012 T^{4} + 26493888 T^{5} + 1159557120 T^{6} - 122631557024 T^{7} + 16941340000550 T^{8} - 122631557024 p^{3} T^{9} + 1159557120 p^{6} T^{10} + 26493888 p^{9} T^{11} - 3879012 p^{12} T^{12} - 6528 p^{15} T^{13} + 512 p^{18} T^{14} - 32 p^{21} T^{15} + p^{24} T^{16} \)
17 \( 1 - 44 T + 968 T^{2} - 129572 T^{3} - 44831476 T^{4} + 1708038260 T^{5} - 23362363080 T^{6} - 35298913700 T^{7} + 1020085916893030 T^{8} - 35298913700 p^{3} T^{9} - 23362363080 p^{6} T^{10} + 1708038260 p^{9} T^{11} - 44831476 p^{12} T^{12} - 129572 p^{15} T^{13} + 968 p^{18} T^{14} - 44 p^{21} T^{15} + p^{24} T^{16} \)
19 \( ( 1 - 40 T + 20204 T^{2} - 682920 T^{3} + 191471446 T^{4} - 682920 p^{3} T^{5} + 20204 p^{6} T^{6} - 40 p^{9} T^{7} + p^{12} T^{8} )^{2} \)
23 \( 1 + 10 p T + 50 p^{2} T^{2} + 5650466 T^{3} + 653081040 T^{4} + 21285292418 T^{5} + 3585506756718 T^{6} + 135360139109510 T^{7} - 56795360851107362 T^{8} + 135360139109510 p^{3} T^{9} + 3585506756718 p^{6} T^{10} + 21285292418 p^{9} T^{11} + 653081040 p^{12} T^{12} + 5650466 p^{15} T^{13} + 50 p^{20} T^{14} + 10 p^{22} T^{15} + p^{24} T^{16} \)
29 \( 1 - 80472 T^{2} + 3106511452 T^{4} - 80137039768488 T^{6} + 1842648666818932134 T^{8} - 80137039768488 p^{6} T^{10} + 3106511452 p^{12} T^{12} - 80472 p^{18} T^{14} + p^{24} T^{16} \)
31 \( 1 - 62748 T^{2} + 3477417012 T^{4} - 135905662590692 T^{6} + 4689277571795603094 T^{8} - 135905662590692 p^{6} T^{10} + 3477417012 p^{12} T^{12} - 62748 p^{18} T^{14} + p^{24} T^{16} \)
37 \( 1 - 292 T + 42632 T^{2} - 5877852 T^{3} - 4509181140 T^{4} + 1091770393116 T^{5} - 109286972362440 T^{6} - 2156121499050556 T^{7} + 10042945903134047558 T^{8} - 2156121499050556 p^{3} T^{9} - 109286972362440 p^{6} T^{10} + 1091770393116 p^{9} T^{11} - 4509181140 p^{12} T^{12} - 5877852 p^{15} T^{13} + 42632 p^{18} T^{14} - 292 p^{21} T^{15} + p^{24} T^{16} \)
41 \( ( 1 - 466 T + 230064 T^{2} - 58858398 T^{3} + 19118241406 T^{4} - 58858398 p^{3} T^{5} + 230064 p^{6} T^{6} - 466 p^{9} T^{7} + p^{12} T^{8} )^{2} \)
43 \( 1 - 458 T + 104882 T^{2} - 38116054 T^{3} + 1478176560 T^{4} + 2685524362738 T^{5} - 356185768434 p^{2} T^{6} + 5926476758433338 p T^{7} - 97733452598943785282 T^{8} + 5926476758433338 p^{4} T^{9} - 356185768434 p^{8} T^{10} + 2685524362738 p^{9} T^{11} + 1478176560 p^{12} T^{12} - 38116054 p^{15} T^{13} + 104882 p^{18} T^{14} - 458 p^{21} T^{15} + p^{24} T^{16} \)
47 \( 1 - 766 T + 293378 T^{2} - 102474810 T^{3} + 21852951824 T^{4} + 2185479617782 T^{5} - 2834709345174434 T^{6} + 1436973169139510898 T^{7} - \)\(56\!\cdots\!10\)\( T^{8} + 1436973169139510898 p^{3} T^{9} - 2834709345174434 p^{6} T^{10} + 2185479617782 p^{9} T^{11} + 21852951824 p^{12} T^{12} - 102474810 p^{15} T^{13} + 293378 p^{18} T^{14} - 766 p^{21} T^{15} + p^{24} T^{16} \)
53 \( 1 - 892 T + 397832 T^{2} - 226500196 T^{3} + 82564790060 T^{4} - 2638376352348 T^{5} - 4842314458836296 T^{6} + 4720656590664156636 T^{7} - \)\(29\!\cdots\!62\)\( T^{8} + 4720656590664156636 p^{3} T^{9} - 4842314458836296 p^{6} T^{10} - 2638376352348 p^{9} T^{11} + 82564790060 p^{12} T^{12} - 226500196 p^{15} T^{13} + 397832 p^{18} T^{14} - 892 p^{21} T^{15} + p^{24} T^{16} \)
59 \( ( 1 - 8 T + 437068 T^{2} - 18916040 T^{3} + 111203970486 T^{4} - 18916040 p^{3} T^{5} + 437068 p^{6} T^{6} - 8 p^{9} T^{7} + p^{12} T^{8} )^{2} \)
61 \( ( 1 + 1282 T + 1358232 T^{2} + 909520246 T^{3} + 513483644510 T^{4} + 909520246 p^{3} T^{5} + 1358232 p^{6} T^{6} + 1282 p^{9} T^{7} + p^{12} T^{8} )^{2} \)
67 \( 1 + 194 T + 18818 T^{2} + 124825806 T^{3} + 834573936 T^{4} - 32376168442698 T^{5} + 1494059231563758 T^{6} - 3650767611352235158 T^{7} - \)\(14\!\cdots\!34\)\( T^{8} - 3650767611352235158 p^{3} T^{9} + 1494059231563758 p^{6} T^{10} - 32376168442698 p^{9} T^{11} + 834573936 p^{12} T^{12} + 124825806 p^{15} T^{13} + 18818 p^{18} T^{14} + 194 p^{21} T^{15} + p^{24} T^{16} \)
71 \( 1 - 1114300 T^{2} + 598375465460 T^{4} - 290099172812677764 T^{6} + \)\(12\!\cdots\!90\)\( T^{8} - 290099172812677764 p^{6} T^{10} + 598375465460 p^{12} T^{12} - 1114300 p^{18} T^{14} + p^{24} T^{16} \)
73 \( 1 + 1744 T + 1520768 T^{2} + 833868432 T^{3} + 276194091196 T^{4} + 94291850811248 T^{5} + 92086133077927296 T^{6} + 87931311923302359856 T^{7} + \)\(64\!\cdots\!54\)\( T^{8} + 87931311923302359856 p^{3} T^{9} + 92086133077927296 p^{6} T^{10} + 94291850811248 p^{9} T^{11} + 276194091196 p^{12} T^{12} + 833868432 p^{15} T^{13} + 1520768 p^{18} T^{14} + 1744 p^{21} T^{15} + p^{24} T^{16} \)
79 \( ( 1 + 1608 T + 2683644 T^{2} + 2441147816 T^{3} + 2160325296198 T^{4} + 2441147816 p^{3} T^{5} + 2683644 p^{6} T^{6} + 1608 p^{9} T^{7} + p^{12} T^{8} )^{2} \)
83 \( 1 - 3762 T + 7076322 T^{2} - 9679307854 T^{3} + 10795655378256 T^{4} - 10021238795574134 T^{5} + 8150866957631680334 T^{6} - \)\(62\!\cdots\!98\)\( T^{7} + \)\(46\!\cdots\!06\)\( T^{8} - \)\(62\!\cdots\!98\)\( p^{3} T^{9} + 8150866957631680334 p^{6} T^{10} - 10021238795574134 p^{9} T^{11} + 10795655378256 p^{12} T^{12} - 9679307854 p^{15} T^{13} + 7076322 p^{18} T^{14} - 3762 p^{21} T^{15} + p^{24} T^{16} \)
89 \( 1 - 1919560 T^{2} + 2619010310876 T^{4} - 2594659557541013880 T^{6} + \)\(21\!\cdots\!06\)\( T^{8} - 2594659557541013880 p^{6} T^{10} + 2619010310876 p^{12} T^{12} - 1919560 p^{18} T^{14} + p^{24} T^{16} \)
97 \( 1 + 680 T + 231200 T^{2} - 398706440 T^{3} - 358700279364 T^{4} + 486641844960680 T^{5} + 493331371810956000 T^{6} + 87968718802581283000 T^{7} - \)\(41\!\cdots\!74\)\( T^{8} + 87968718802581283000 p^{3} T^{9} + 493331371810956000 p^{6} T^{10} + 486641844960680 p^{9} T^{11} - 358700279364 p^{12} T^{12} - 398706440 p^{15} T^{13} + 231200 p^{18} T^{14} + 680 p^{21} T^{15} + p^{24} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.64929748211172649170616490766, −4.55241897392027970788996343315, −4.25624394436261983371837437232, −4.18205250537826593575846056653, −4.17710400499760866976728509049, −4.12686114336855197501721502535, −3.89570627866280385787465046190, −3.42464657051063937947940136693, −3.35976953471885108354486114804, −3.21507712619477156283704173754, −3.09321488042093023255556343651, −3.01708689930625601429429038770, −2.70062286370050241903603096983, −2.51283012484206707701673662497, −2.38292254352561137562649389620, −2.37621342272653011825781286289, −1.96841814944145254463304874279, −1.67075304681251004424993372597, −1.65923132584801241575092510416, −1.54511615170093542797996951658, −1.13344486864604896714209985589, −0.78591567772780696065183943770, −0.63389213209040719790420691685, −0.57518468464181866779642007041, −0.42052546486143978671565874666, 0.42052546486143978671565874666, 0.57518468464181866779642007041, 0.63389213209040719790420691685, 0.78591567772780696065183943770, 1.13344486864604896714209985589, 1.54511615170093542797996951658, 1.65923132584801241575092510416, 1.67075304681251004424993372597, 1.96841814944145254463304874279, 2.37621342272653011825781286289, 2.38292254352561137562649389620, 2.51283012484206707701673662497, 2.70062286370050241903603096983, 3.01708689930625601429429038770, 3.09321488042093023255556343651, 3.21507712619477156283704173754, 3.35976953471885108354486114804, 3.42464657051063937947940136693, 3.89570627866280385787465046190, 4.12686114336855197501721502535, 4.17710400499760866976728509049, 4.18205250537826593575846056653, 4.25624394436261983371837437232, 4.55241897392027970788996343315, 4.64929748211172649170616490766

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.