Properties

Label 320.4.n.h.127.1
Level $320$
Weight $4$
Character 320.127
Analytic conductor $18.881$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(63,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.63"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 22x^{5} + 532x^{4} - 636x^{3} + 450x^{2} + 2160x + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.1
Root \(1.56751 - 1.56751i\) of defining polynomial
Character \(\chi\) \(=\) 320.127
Dual form 320.4.n.h.63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.96543 - 4.96543i) q^{3} +(10.6555 - 3.38543i) q^{5} +(-1.30461 + 1.30461i) q^{7} +22.3109i q^{9} -26.4709i q^{11} +(44.6735 - 44.6735i) q^{13} +(-69.7190 - 36.0988i) q^{15} +(65.2528 + 65.2528i) q^{17} +91.3469 q^{19} +12.9559 q^{21} +(-108.379 - 108.379i) q^{23} +(102.078 - 72.1466i) q^{25} +(-23.2833 + 23.2833i) q^{27} -9.51196i q^{29} +87.4490i q^{31} +(-131.439 + 131.439i) q^{33} +(-9.48453 + 18.3178i) q^{35} +(-226.381 - 226.381i) q^{37} -443.646 q^{39} -285.699 q^{41} +(-276.545 - 276.545i) q^{43} +(75.5320 + 237.733i) q^{45} +(401.884 - 401.884i) q^{47} +339.596i q^{49} -648.016i q^{51} +(239.525 - 239.525i) q^{53} +(-89.6154 - 282.060i) q^{55} +(-453.576 - 453.576i) q^{57} -548.969 q^{59} -741.044 q^{61} +(-29.1070 - 29.1070i) q^{63} +(324.777 - 627.255i) q^{65} +(-160.692 + 160.692i) q^{67} +1076.30i q^{69} +67.8704i q^{71} +(372.290 - 372.290i) q^{73} +(-865.098 - 148.621i) q^{75} +(34.5341 + 34.5341i) q^{77} -3.62125 q^{79} +833.618 q^{81} +(804.332 + 804.332i) q^{83} +(916.207 + 474.390i) q^{85} +(-47.2309 + 47.2309i) q^{87} +652.940i q^{89} +116.563i q^{91} +(434.222 - 434.222i) q^{93} +(973.344 - 309.248i) q^{95} +(-260.189 - 260.189i) q^{97} +590.591 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 14 q^{5} - 10 q^{7} + 32 q^{13} - 22 q^{15} + 44 q^{17} + 80 q^{19} - 236 q^{21} - 230 q^{23} - 44 q^{25} + 80 q^{27} - 260 q^{33} - 866 q^{35} + 292 q^{37} - 1068 q^{39} + 932 q^{41} + 458 q^{43}+ \cdots + 1844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.96543 4.96543i −0.955597 0.955597i 0.0434584 0.999055i \(-0.486162\pi\)
−0.999055 + 0.0434584i \(0.986162\pi\)
\(4\) 0 0
\(5\) 10.6555 3.38543i 0.953053 0.302802i
\(6\) 0 0
\(7\) −1.30461 + 1.30461i −0.0704421 + 0.0704421i −0.741450 0.671008i \(-0.765862\pi\)
0.671008 + 0.741450i \(0.265862\pi\)
\(8\) 0 0
\(9\) 22.3109i 0.826331i
\(10\) 0 0
\(11\) 26.4709i 0.725571i −0.931873 0.362786i \(-0.881826\pi\)
0.931873 0.362786i \(-0.118174\pi\)
\(12\) 0 0
\(13\) 44.6735 44.6735i 0.953091 0.953091i −0.0458567 0.998948i \(-0.514602\pi\)
0.998948 + 0.0458567i \(0.0146018\pi\)
\(14\) 0 0
\(15\) −69.7190 36.0988i −1.20009 0.621378i
\(16\) 0 0
\(17\) 65.2528 + 65.2528i 0.930948 + 0.930948i 0.997765 0.0668170i \(-0.0212844\pi\)
−0.0668170 + 0.997765i \(0.521284\pi\)
\(18\) 0 0
\(19\) 91.3469 1.10297 0.551485 0.834185i \(-0.314062\pi\)
0.551485 + 0.834185i \(0.314062\pi\)
\(20\) 0 0
\(21\) 12.9559 0.134629
\(22\) 0 0
\(23\) −108.379 108.379i −0.982549 0.982549i 0.0173010 0.999850i \(-0.494493\pi\)
−0.999850 + 0.0173010i \(0.994493\pi\)
\(24\) 0 0
\(25\) 102.078 72.1466i 0.816622 0.577173i
\(26\) 0 0
\(27\) −23.2833 + 23.2833i −0.165958 + 0.165958i
\(28\) 0 0
\(29\) 9.51196i 0.0609078i −0.999536 0.0304539i \(-0.990305\pi\)
0.999536 0.0304539i \(-0.00969528\pi\)
\(30\) 0 0
\(31\) 87.4490i 0.506655i 0.967381 + 0.253328i \(0.0815250\pi\)
−0.967381 + 0.253328i \(0.918475\pi\)
\(32\) 0 0
\(33\) −131.439 + 131.439i −0.693353 + 0.693353i
\(34\) 0 0
\(35\) −9.48453 + 18.3178i −0.0458051 + 0.0884651i
\(36\) 0 0
\(37\) −226.381 226.381i −1.00586 1.00586i −0.999983 0.00587858i \(-0.998129\pi\)
−0.00587858 0.999983i \(-0.501871\pi\)
\(38\) 0 0
\(39\) −443.646 −1.82154
\(40\) 0 0
\(41\) −285.699 −1.08826 −0.544130 0.839001i \(-0.683140\pi\)
−0.544130 + 0.839001i \(0.683140\pi\)
\(42\) 0 0
\(43\) −276.545 276.545i −0.980761 0.980761i 0.0190571 0.999818i \(-0.493934\pi\)
−0.999818 + 0.0190571i \(0.993934\pi\)
\(44\) 0 0
\(45\) 75.5320 + 237.733i 0.250215 + 0.787537i
\(46\) 0 0
\(47\) 401.884 401.884i 1.24725 1.24725i 0.290324 0.956928i \(-0.406237\pi\)
0.956928 0.290324i \(-0.0937631\pi\)
\(48\) 0 0
\(49\) 339.596i 0.990076i
\(50\) 0 0
\(51\) 648.016i 1.77922i
\(52\) 0 0
\(53\) 239.525 239.525i 0.620778 0.620778i −0.324953 0.945730i \(-0.605348\pi\)
0.945730 + 0.324953i \(0.105348\pi\)
\(54\) 0 0
\(55\) −89.6154 282.060i −0.219704 0.691508i
\(56\) 0 0
\(57\) −453.576 453.576i −1.05399 1.05399i
\(58\) 0 0
\(59\) −548.969 −1.21135 −0.605676 0.795712i \(-0.707097\pi\)
−0.605676 + 0.795712i \(0.707097\pi\)
\(60\) 0 0
\(61\) −741.044 −1.55543 −0.777713 0.628620i \(-0.783620\pi\)
−0.777713 + 0.628620i \(0.783620\pi\)
\(62\) 0 0
\(63\) −29.1070 29.1070i −0.0582085 0.0582085i
\(64\) 0 0
\(65\) 324.777 627.255i 0.619749 1.19694i
\(66\) 0 0
\(67\) −160.692 + 160.692i −0.293010 + 0.293010i −0.838268 0.545258i \(-0.816432\pi\)
0.545258 + 0.838268i \(0.316432\pi\)
\(68\) 0 0
\(69\) 1076.30i 1.87784i
\(70\) 0 0
\(71\) 67.8704i 0.113447i 0.998390 + 0.0567235i \(0.0180653\pi\)
−0.998390 + 0.0567235i \(0.981935\pi\)
\(72\) 0 0
\(73\) 372.290 372.290i 0.596894 0.596894i −0.342591 0.939485i \(-0.611304\pi\)
0.939485 + 0.342591i \(0.111304\pi\)
\(74\) 0 0
\(75\) −865.098 148.621i −1.33191 0.228817i
\(76\) 0 0
\(77\) 34.5341 + 34.5341i 0.0511108 + 0.0511108i
\(78\) 0 0
\(79\) −3.62125 −0.00515725 −0.00257863 0.999997i \(-0.500821\pi\)
−0.00257863 + 0.999997i \(0.500821\pi\)
\(80\) 0 0
\(81\) 833.618 1.14351
\(82\) 0 0
\(83\) 804.332 + 804.332i 1.06370 + 1.06370i 0.997828 + 0.0658698i \(0.0209822\pi\)
0.0658698 + 0.997828i \(0.479018\pi\)
\(84\) 0 0
\(85\) 916.207 + 474.390i 1.16914 + 0.605350i
\(86\) 0 0
\(87\) −47.2309 + 47.2309i −0.0582033 + 0.0582033i
\(88\) 0 0
\(89\) 652.940i 0.777657i 0.921310 + 0.388829i \(0.127120\pi\)
−0.921310 + 0.388829i \(0.872880\pi\)
\(90\) 0 0
\(91\) 116.563i 0.134276i
\(92\) 0 0
\(93\) 434.222 434.222i 0.484158 0.484158i
\(94\) 0 0
\(95\) 973.344 309.248i 1.05119 0.333981i
\(96\) 0 0
\(97\) −260.189 260.189i −0.272352 0.272352i 0.557694 0.830046i \(-0.311686\pi\)
−0.830046 + 0.557694i \(0.811686\pi\)
\(98\) 0 0
\(99\) 590.591 0.599562
\(100\) 0 0
\(101\) −296.448 −0.292056 −0.146028 0.989280i \(-0.546649\pi\)
−0.146028 + 0.989280i \(0.546649\pi\)
\(102\) 0 0
\(103\) 176.629 + 176.629i 0.168969 + 0.168969i 0.786526 0.617557i \(-0.211878\pi\)
−0.617557 + 0.786526i \(0.711878\pi\)
\(104\) 0 0
\(105\) 138.051 43.8611i 0.128308 0.0407658i
\(106\) 0 0
\(107\) 534.354 534.354i 0.482785 0.482785i −0.423235 0.906020i \(-0.639106\pi\)
0.906020 + 0.423235i \(0.139106\pi\)
\(108\) 0 0
\(109\) 1479.12i 1.29976i −0.760036 0.649881i \(-0.774819\pi\)
0.760036 0.649881i \(-0.225181\pi\)
\(110\) 0 0
\(111\) 2248.16i 1.92240i
\(112\) 0 0
\(113\) −333.659 + 333.659i −0.277769 + 0.277769i −0.832218 0.554449i \(-0.812929\pi\)
0.554449 + 0.832218i \(0.312929\pi\)
\(114\) 0 0
\(115\) −1521.74 787.921i −1.23394 0.638904i
\(116\) 0 0
\(117\) 996.706 + 996.706i 0.787568 + 0.787568i
\(118\) 0 0
\(119\) −170.258 −0.131156
\(120\) 0 0
\(121\) 630.290 0.473547
\(122\) 0 0
\(123\) 1418.62 + 1418.62i 1.03994 + 1.03994i
\(124\) 0 0
\(125\) 843.438 1114.33i 0.603515 0.797351i
\(126\) 0 0
\(127\) 413.402 413.402i 0.288846 0.288846i −0.547778 0.836624i \(-0.684526\pi\)
0.836624 + 0.547778i \(0.184526\pi\)
\(128\) 0 0
\(129\) 2746.33i 1.87442i
\(130\) 0 0
\(131\) 1650.04i 1.10050i 0.835001 + 0.550248i \(0.185467\pi\)
−0.835001 + 0.550248i \(0.814533\pi\)
\(132\) 0 0
\(133\) −119.172 + 119.172i −0.0776955 + 0.0776955i
\(134\) 0 0
\(135\) −169.270 + 326.918i −0.107914 + 0.208419i
\(136\) 0 0
\(137\) −1795.63 1795.63i −1.11979 1.11979i −0.991772 0.128014i \(-0.959140\pi\)
−0.128014 0.991772i \(-0.540860\pi\)
\(138\) 0 0
\(139\) 1864.83 1.13793 0.568967 0.822360i \(-0.307343\pi\)
0.568967 + 0.822360i \(0.307343\pi\)
\(140\) 0 0
\(141\) −3991.05 −2.38374
\(142\) 0 0
\(143\) −1182.55 1182.55i −0.691536 0.691536i
\(144\) 0 0
\(145\) −32.2021 101.354i −0.0184430 0.0580484i
\(146\) 0 0
\(147\) 1686.24 1686.24i 0.946113 0.946113i
\(148\) 0 0
\(149\) 1216.54i 0.668881i −0.942417 0.334440i \(-0.891453\pi\)
0.942417 0.334440i \(-0.108547\pi\)
\(150\) 0 0
\(151\) 1323.56i 0.713312i 0.934236 + 0.356656i \(0.116083\pi\)
−0.934236 + 0.356656i \(0.883917\pi\)
\(152\) 0 0
\(153\) −1455.85 + 1455.85i −0.769271 + 0.769271i
\(154\) 0 0
\(155\) 296.052 + 931.810i 0.153416 + 0.482869i
\(156\) 0 0
\(157\) −1228.40 1228.40i −0.624441 0.624441i 0.322223 0.946664i \(-0.395570\pi\)
−0.946664 + 0.322223i \(0.895570\pi\)
\(158\) 0 0
\(159\) −2378.68 −1.18643
\(160\) 0 0
\(161\) 282.785 0.138426
\(162\) 0 0
\(163\) 2481.60 + 2481.60i 1.19248 + 1.19248i 0.976370 + 0.216107i \(0.0693361\pi\)
0.216107 + 0.976370i \(0.430664\pi\)
\(164\) 0 0
\(165\) −955.569 + 1845.53i −0.450854 + 0.870752i
\(166\) 0 0
\(167\) 1580.80 1580.80i 0.732491 0.732491i −0.238622 0.971113i \(-0.576696\pi\)
0.971113 + 0.238622i \(0.0766956\pi\)
\(168\) 0 0
\(169\) 1794.44i 0.816766i
\(170\) 0 0
\(171\) 2038.03i 0.911417i
\(172\) 0 0
\(173\) 811.428 811.428i 0.356600 0.356600i −0.505958 0.862558i \(-0.668861\pi\)
0.862558 + 0.505958i \(0.168861\pi\)
\(174\) 0 0
\(175\) −39.0483 + 227.294i −0.0168673 + 0.0981819i
\(176\) 0 0
\(177\) 2725.87 + 2725.87i 1.15756 + 1.15756i
\(178\) 0 0
\(179\) −900.876 −0.376171 −0.188086 0.982153i \(-0.560228\pi\)
−0.188086 + 0.982153i \(0.560228\pi\)
\(180\) 0 0
\(181\) 2458.41 1.00957 0.504784 0.863245i \(-0.331572\pi\)
0.504784 + 0.863245i \(0.331572\pi\)
\(182\) 0 0
\(183\) 3679.60 + 3679.60i 1.48636 + 1.48636i
\(184\) 0 0
\(185\) −3178.60 1645.80i −1.26322 0.654063i
\(186\) 0 0
\(187\) 1727.30 1727.30i 0.675469 0.675469i
\(188\) 0 0
\(189\) 60.7510i 0.0233809i
\(190\) 0 0
\(191\) 3574.58i 1.35418i 0.735902 + 0.677088i \(0.236758\pi\)
−0.735902 + 0.677088i \(0.763242\pi\)
\(192\) 0 0
\(193\) 536.362 536.362i 0.200042 0.200042i −0.599976 0.800018i \(-0.704823\pi\)
0.800018 + 0.599976i \(0.204823\pi\)
\(194\) 0 0
\(195\) −4727.25 + 1501.93i −1.73603 + 0.551567i
\(196\) 0 0
\(197\) 2091.00 + 2091.00i 0.756232 + 0.756232i 0.975634 0.219403i \(-0.0704108\pi\)
−0.219403 + 0.975634i \(0.570411\pi\)
\(198\) 0 0
\(199\) 2672.91 0.952148 0.476074 0.879405i \(-0.342059\pi\)
0.476074 + 0.879405i \(0.342059\pi\)
\(200\) 0 0
\(201\) 1595.81 0.559999
\(202\) 0 0
\(203\) 12.4094 + 12.4094i 0.00429047 + 0.00429047i
\(204\) 0 0
\(205\) −3044.25 + 967.212i −1.03717 + 0.329527i
\(206\) 0 0
\(207\) 2418.04 2418.04i 0.811910 0.811910i
\(208\) 0 0
\(209\) 2418.04i 0.800283i
\(210\) 0 0
\(211\) 5375.95i 1.75401i −0.480482 0.877004i \(-0.659538\pi\)
0.480482 0.877004i \(-0.340462\pi\)
\(212\) 0 0
\(213\) 337.005 337.005i 0.108410 0.108410i
\(214\) 0 0
\(215\) −3882.94 2010.49i −1.23169 0.637742i
\(216\) 0 0
\(217\) −114.087 114.087i −0.0356899 0.0356899i
\(218\) 0 0
\(219\) −3697.16 −1.14078
\(220\) 0 0
\(221\) 5830.13 1.77456
\(222\) 0 0
\(223\) 850.012 + 850.012i 0.255251 + 0.255251i 0.823119 0.567868i \(-0.192232\pi\)
−0.567868 + 0.823119i \(0.692232\pi\)
\(224\) 0 0
\(225\) 1609.66 + 2277.45i 0.476936 + 0.674800i
\(226\) 0 0
\(227\) −4013.01 + 4013.01i −1.17336 + 1.17336i −0.191956 + 0.981403i \(0.561483\pi\)
−0.981403 + 0.191956i \(0.938517\pi\)
\(228\) 0 0
\(229\) 230.627i 0.0665513i −0.999446 0.0332757i \(-0.989406\pi\)
0.999446 0.0332757i \(-0.0105939\pi\)
\(230\) 0 0
\(231\) 342.953i 0.0976826i
\(232\) 0 0
\(233\) −209.000 + 209.000i −0.0587641 + 0.0587641i −0.735878 0.677114i \(-0.763230\pi\)
0.677114 + 0.735878i \(0.263230\pi\)
\(234\) 0 0
\(235\) 2921.71 5642.81i 0.811028 1.56637i
\(236\) 0 0
\(237\) 17.9811 + 17.9811i 0.00492825 + 0.00492825i
\(238\) 0 0
\(239\) −4890.31 −1.32355 −0.661774 0.749704i \(-0.730196\pi\)
−0.661774 + 0.749704i \(0.730196\pi\)
\(240\) 0 0
\(241\) 2416.64 0.645931 0.322966 0.946411i \(-0.395320\pi\)
0.322966 + 0.946411i \(0.395320\pi\)
\(242\) 0 0
\(243\) −3510.62 3510.62i −0.926775 0.926775i
\(244\) 0 0
\(245\) 1149.68 + 3618.55i 0.299797 + 0.943595i
\(246\) 0 0
\(247\) 4080.78 4080.78i 1.05123 1.05123i
\(248\) 0 0
\(249\) 7987.71i 2.03293i
\(250\) 0 0
\(251\) 5842.78i 1.46929i 0.678449 + 0.734647i \(0.262652\pi\)
−0.678449 + 0.734647i \(0.737348\pi\)
\(252\) 0 0
\(253\) −2868.90 + 2868.90i −0.712909 + 0.712909i
\(254\) 0 0
\(255\) −2193.81 6904.91i −0.538752 1.69569i
\(256\) 0 0
\(257\) 3125.99 + 3125.99i 0.758731 + 0.758731i 0.976091 0.217360i \(-0.0697446\pi\)
−0.217360 + 0.976091i \(0.569745\pi\)
\(258\) 0 0
\(259\) 590.677 0.141710
\(260\) 0 0
\(261\) 212.221 0.0503300
\(262\) 0 0
\(263\) −423.507 423.507i −0.0992950 0.0992950i 0.655714 0.755009i \(-0.272368\pi\)
−0.755009 + 0.655714i \(0.772368\pi\)
\(264\) 0 0
\(265\) 1741.35 3363.14i 0.403662 0.779607i
\(266\) 0 0
\(267\) 3242.13 3242.13i 0.743127 0.743127i
\(268\) 0 0
\(269\) 461.980i 0.104712i −0.998628 0.0523558i \(-0.983327\pi\)
0.998628 0.0523558i \(-0.0166730\pi\)
\(270\) 0 0
\(271\) 358.950i 0.0804599i 0.999190 + 0.0402299i \(0.0128090\pi\)
−0.999190 + 0.0402299i \(0.987191\pi\)
\(272\) 0 0
\(273\) 578.783 578.783i 0.128313 0.128313i
\(274\) 0 0
\(275\) −1909.79 2702.09i −0.418780 0.592517i
\(276\) 0 0
\(277\) −127.536 127.536i −0.0276638 0.0276638i 0.693140 0.720803i \(-0.256227\pi\)
−0.720803 + 0.693140i \(0.756227\pi\)
\(278\) 0 0
\(279\) −1951.07 −0.418665
\(280\) 0 0
\(281\) −5906.63 −1.25395 −0.626975 0.779040i \(-0.715707\pi\)
−0.626975 + 0.779040i \(0.715707\pi\)
\(282\) 0 0
\(283\) −2686.79 2686.79i −0.564357 0.564357i 0.366185 0.930542i \(-0.380664\pi\)
−0.930542 + 0.366185i \(0.880664\pi\)
\(284\) 0 0
\(285\) −6368.62 3297.52i −1.32366 0.685361i
\(286\) 0 0
\(287\) 372.724 372.724i 0.0766593 0.0766593i
\(288\) 0 0
\(289\) 3602.85i 0.733329i
\(290\) 0 0
\(291\) 2583.90i 0.520518i
\(292\) 0 0
\(293\) −2591.70 + 2591.70i −0.516753 + 0.516753i −0.916587 0.399835i \(-0.869068\pi\)
0.399835 + 0.916587i \(0.369068\pi\)
\(294\) 0 0
\(295\) −5849.52 + 1858.50i −1.15448 + 0.366800i
\(296\) 0 0
\(297\) 616.329 + 616.329i 0.120414 + 0.120414i
\(298\) 0 0
\(299\) −9683.35 −1.87292
\(300\) 0 0
\(301\) 721.565 0.138174
\(302\) 0 0
\(303\) 1471.99 + 1471.99i 0.279088 + 0.279088i
\(304\) 0 0
\(305\) −7896.16 + 2508.75i −1.48240 + 0.470986i
\(306\) 0 0
\(307\) 6493.85 6493.85i 1.20724 1.20724i 0.235327 0.971916i \(-0.424384\pi\)
0.971916 0.235327i \(-0.0756161\pi\)
\(308\) 0 0
\(309\) 1754.08i 0.322933i
\(310\) 0 0
\(311\) 6172.43i 1.12542i −0.826653 0.562711i \(-0.809758\pi\)
0.826653 0.562711i \(-0.190242\pi\)
\(312\) 0 0
\(313\) −3860.56 + 3860.56i −0.697162 + 0.697162i −0.963797 0.266636i \(-0.914088\pi\)
0.266636 + 0.963797i \(0.414088\pi\)
\(314\) 0 0
\(315\) −408.688 211.609i −0.0731014 0.0378502i
\(316\) 0 0
\(317\) −2685.37 2685.37i −0.475791 0.475791i 0.427992 0.903783i \(-0.359221\pi\)
−0.903783 + 0.427992i \(0.859221\pi\)
\(318\) 0 0
\(319\) −251.790 −0.0441929
\(320\) 0 0
\(321\) −5306.59 −0.922695
\(322\) 0 0
\(323\) 5960.64 + 5960.64i 1.02681 + 1.02681i
\(324\) 0 0
\(325\) 1337.13 7783.20i 0.228217 1.32841i
\(326\) 0 0
\(327\) −7344.47 + 7344.47i −1.24205 + 1.24205i
\(328\) 0 0
\(329\) 1048.60i 0.175718i
\(330\) 0 0
\(331\) 2464.95i 0.409323i 0.978833 + 0.204661i \(0.0656093\pi\)
−0.978833 + 0.204661i \(0.934391\pi\)
\(332\) 0 0
\(333\) 5050.78 5050.78i 0.831174 0.831174i
\(334\) 0 0
\(335\) −1168.24 + 2256.26i −0.190530 + 0.367978i
\(336\) 0 0
\(337\) 1119.47 + 1119.47i 0.180954 + 0.180954i 0.791771 0.610817i \(-0.209159\pi\)
−0.610817 + 0.791771i \(0.709159\pi\)
\(338\) 0 0
\(339\) 3313.51 0.530871
\(340\) 0 0
\(341\) 2314.86 0.367614
\(342\) 0 0
\(343\) −890.519 890.519i −0.140185 0.140185i
\(344\) 0 0
\(345\) 3643.73 + 11468.5i 0.568614 + 1.78968i
\(346\) 0 0
\(347\) 3015.84 3015.84i 0.466566 0.466566i −0.434234 0.900800i \(-0.642981\pi\)
0.900800 + 0.434234i \(0.142981\pi\)
\(348\) 0 0
\(349\) 1787.59i 0.274177i −0.990559 0.137088i \(-0.956226\pi\)
0.990559 0.137088i \(-0.0437745\pi\)
\(350\) 0 0
\(351\) 2080.29i 0.316346i
\(352\) 0 0
\(353\) 3120.12 3120.12i 0.470445 0.470445i −0.431613 0.902059i \(-0.642056\pi\)
0.902059 + 0.431613i \(0.142056\pi\)
\(354\) 0 0
\(355\) 229.770 + 723.190i 0.0343520 + 0.108121i
\(356\) 0 0
\(357\) 845.405 + 845.405i 0.125332 + 0.125332i
\(358\) 0 0
\(359\) 1883.69 0.276928 0.138464 0.990367i \(-0.455783\pi\)
0.138464 + 0.990367i \(0.455783\pi\)
\(360\) 0 0
\(361\) 1485.26 0.216542
\(362\) 0 0
\(363\) −3129.66 3129.66i −0.452520 0.452520i
\(364\) 0 0
\(365\) 2706.56 5227.28i 0.388131 0.749613i
\(366\) 0 0
\(367\) 8159.12 8159.12i 1.16050 1.16050i 0.176130 0.984367i \(-0.443642\pi\)
0.984367 0.176130i \(-0.0563580\pi\)
\(368\) 0 0
\(369\) 6374.20i 0.899262i
\(370\) 0 0
\(371\) 624.970i 0.0874578i
\(372\) 0 0
\(373\) −9453.68 + 9453.68i −1.31231 + 1.31231i −0.392607 + 0.919706i \(0.628427\pi\)
−0.919706 + 0.392607i \(0.871573\pi\)
\(374\) 0 0
\(375\) −9721.17 + 1345.11i −1.33866 + 0.185229i
\(376\) 0 0
\(377\) −424.932 424.932i −0.0580507 0.0580507i
\(378\) 0 0
\(379\) −1188.31 −0.161054 −0.0805270 0.996752i \(-0.525660\pi\)
−0.0805270 + 0.996752i \(0.525660\pi\)
\(380\) 0 0
\(381\) −4105.43 −0.552041
\(382\) 0 0
\(383\) −1777.70 1777.70i −0.237170 0.237170i 0.578507 0.815677i \(-0.303635\pi\)
−0.815677 + 0.578507i \(0.803635\pi\)
\(384\) 0 0
\(385\) 484.890 + 251.064i 0.0641877 + 0.0332349i
\(386\) 0 0
\(387\) 6169.98 6169.98i 0.810433 0.810433i
\(388\) 0 0
\(389\) 6744.45i 0.879068i 0.898226 + 0.439534i \(0.144856\pi\)
−0.898226 + 0.439534i \(0.855144\pi\)
\(390\) 0 0
\(391\) 14144.1i 1.82941i
\(392\) 0 0
\(393\) 8193.17 8193.17i 1.05163 1.05163i
\(394\) 0 0
\(395\) −38.5861 + 12.2595i −0.00491514 + 0.00156163i
\(396\) 0 0
\(397\) 3970.53 + 3970.53i 0.501953 + 0.501953i 0.912044 0.410091i \(-0.134503\pi\)
−0.410091 + 0.912044i \(0.634503\pi\)
\(398\) 0 0
\(399\) 1183.48 0.148491
\(400\) 0 0
\(401\) 6700.66 0.834451 0.417225 0.908803i \(-0.363003\pi\)
0.417225 + 0.908803i \(0.363003\pi\)
\(402\) 0 0
\(403\) 3906.65 + 3906.65i 0.482889 + 0.482889i
\(404\) 0 0
\(405\) 8882.58 2822.15i 1.08982 0.346257i
\(406\) 0 0
\(407\) −5992.52 + 5992.52i −0.729824 + 0.729824i
\(408\) 0 0
\(409\) 12814.0i 1.54917i 0.632470 + 0.774585i \(0.282041\pi\)
−0.632470 + 0.774585i \(0.717959\pi\)
\(410\) 0 0
\(411\) 17832.1i 2.14013i
\(412\) 0 0
\(413\) 716.189 716.189i 0.0853302 0.0853302i
\(414\) 0 0
\(415\) 11293.5 + 5847.52i 1.33585 + 0.691671i
\(416\) 0 0
\(417\) −9259.69 9259.69i −1.08741 1.08741i
\(418\) 0 0
\(419\) −1981.16 −0.230993 −0.115496 0.993308i \(-0.536846\pi\)
−0.115496 + 0.993308i \(0.536846\pi\)
\(420\) 0 0
\(421\) 9522.14 1.10233 0.551165 0.834396i \(-0.314184\pi\)
0.551165 + 0.834396i \(0.314184\pi\)
\(422\) 0 0
\(423\) 8966.41 + 8966.41i 1.03064 + 1.03064i
\(424\) 0 0
\(425\) 11368.6 + 1953.09i 1.29755 + 0.222915i
\(426\) 0 0
\(427\) 966.771 966.771i 0.109567 0.109567i
\(428\) 0 0
\(429\) 11743.7i 1.32166i
\(430\) 0 0
\(431\) 7709.75i 0.861638i 0.902438 + 0.430819i \(0.141775\pi\)
−0.902438 + 0.430819i \(0.858225\pi\)
\(432\) 0 0
\(433\) 10058.6 10058.6i 1.11637 1.11637i 0.124099 0.992270i \(-0.460396\pi\)
0.992270 0.124099i \(-0.0396039\pi\)
\(434\) 0 0
\(435\) −343.370 + 663.164i −0.0378468 + 0.0730949i
\(436\) 0 0
\(437\) −9900.11 9900.11i −1.08372 1.08372i
\(438\) 0 0
\(439\) 11958.3 1.30009 0.650046 0.759895i \(-0.274750\pi\)
0.650046 + 0.759895i \(0.274750\pi\)
\(440\) 0 0
\(441\) −7576.70 −0.818130
\(442\) 0 0
\(443\) −1505.18 1505.18i −0.161430 0.161430i 0.621770 0.783200i \(-0.286414\pi\)
−0.783200 + 0.621770i \(0.786414\pi\)
\(444\) 0 0
\(445\) 2210.48 + 6957.38i 0.235476 + 0.741149i
\(446\) 0 0
\(447\) −6040.66 + 6040.66i −0.639180 + 0.639180i
\(448\) 0 0
\(449\) 10336.7i 1.08646i 0.839585 + 0.543228i \(0.182798\pi\)
−0.839585 + 0.543228i \(0.817202\pi\)
\(450\) 0 0
\(451\) 7562.71i 0.789610i
\(452\) 0 0
\(453\) 6572.06 6572.06i 0.681638 0.681638i
\(454\) 0 0
\(455\) 394.614 + 1242.03i 0.0406589 + 0.127972i
\(456\) 0 0
\(457\) −2064.01 2064.01i −0.211270 0.211270i 0.593537 0.804807i \(-0.297731\pi\)
−0.804807 + 0.593537i \(0.797731\pi\)
\(458\) 0 0
\(459\) −3038.59 −0.308997
\(460\) 0 0
\(461\) −894.060 −0.0903265 −0.0451632 0.998980i \(-0.514381\pi\)
−0.0451632 + 0.998980i \(0.514381\pi\)
\(462\) 0 0
\(463\) 4604.34 + 4604.34i 0.462164 + 0.462164i 0.899364 0.437201i \(-0.144030\pi\)
−0.437201 + 0.899364i \(0.644030\pi\)
\(464\) 0 0
\(465\) 3156.81 6096.86i 0.314824 0.608032i
\(466\) 0 0
\(467\) −10159.8 + 10159.8i −1.00672 + 1.00672i −0.00674491 + 0.999977i \(0.502147\pi\)
−0.999977 + 0.00674491i \(0.997853\pi\)
\(468\) 0 0
\(469\) 419.280i 0.0412805i
\(470\) 0 0
\(471\) 12199.1i 1.19343i
\(472\) 0 0
\(473\) −7320.40 + 7320.40i −0.711612 + 0.711612i
\(474\) 0 0
\(475\) 9324.49 6590.37i 0.900709 0.636604i
\(476\) 0 0
\(477\) 5344.01 + 5344.01i 0.512968 + 0.512968i
\(478\) 0 0
\(479\) 18384.7 1.75369 0.876844 0.480775i \(-0.159645\pi\)
0.876844 + 0.480775i \(0.159645\pi\)
\(480\) 0 0
\(481\) −20226.5 −1.91736
\(482\) 0 0
\(483\) −1404.15 1404.15i −0.132279 0.132279i
\(484\) 0 0
\(485\) −3653.28 1891.58i −0.342035 0.177097i
\(486\) 0 0
\(487\) 8981.67 8981.67i 0.835726 0.835726i −0.152567 0.988293i \(-0.548754\pi\)
0.988293 + 0.152567i \(0.0487541\pi\)
\(488\) 0 0
\(489\) 24644.4i 2.27905i
\(490\) 0 0
\(491\) 5020.03i 0.461407i −0.973024 0.230704i \(-0.925897\pi\)
0.973024 0.230704i \(-0.0741028\pi\)
\(492\) 0 0
\(493\) 620.681 620.681i 0.0567020 0.0567020i
\(494\) 0 0
\(495\) 6293.02 1999.40i 0.571414 0.181548i
\(496\) 0 0
\(497\) −88.5441 88.5441i −0.00799144 0.00799144i
\(498\) 0 0
\(499\) 7828.81 0.702336 0.351168 0.936312i \(-0.385785\pi\)
0.351168 + 0.936312i \(0.385785\pi\)
\(500\) 0 0
\(501\) −15698.7 −1.39993
\(502\) 0 0
\(503\) 9107.48 + 9107.48i 0.807321 + 0.807321i 0.984228 0.176907i \(-0.0566090\pi\)
−0.176907 + 0.984228i \(0.556609\pi\)
\(504\) 0 0
\(505\) −3158.79 + 1003.60i −0.278345 + 0.0884352i
\(506\) 0 0
\(507\) −8910.14 + 8910.14i −0.780499 + 0.780499i
\(508\) 0 0
\(509\) 21319.1i 1.85649i 0.371975 + 0.928243i \(0.378681\pi\)
−0.371975 + 0.928243i \(0.621319\pi\)
\(510\) 0 0
\(511\) 971.384i 0.0840930i
\(512\) 0 0
\(513\) −2126.85 + 2126.85i −0.183047 + 0.183047i
\(514\) 0 0
\(515\) 2480.03 + 1284.10i 0.212201 + 0.109872i
\(516\) 0 0
\(517\) −10638.2 10638.2i −0.904970 0.904970i
\(518\) 0 0
\(519\) −8058.18 −0.681531
\(520\) 0 0
\(521\) 12182.6 1.02444 0.512218 0.858856i \(-0.328824\pi\)
0.512218 + 0.858856i \(0.328824\pi\)
\(522\) 0 0
\(523\) −873.920 873.920i −0.0730666 0.0730666i 0.669629 0.742696i \(-0.266453\pi\)
−0.742696 + 0.669629i \(0.766453\pi\)
\(524\) 0 0
\(525\) 1322.50 934.721i 0.109941 0.0777040i
\(526\) 0 0
\(527\) −5706.29 + 5706.29i −0.471670 + 0.471670i
\(528\) 0 0
\(529\) 11325.1i 0.930806i
\(530\) 0 0
\(531\) 12248.0i 1.00098i
\(532\) 0 0
\(533\) −12763.1 + 12763.1i −1.03721 + 1.03721i
\(534\) 0 0
\(535\) 3884.77 7502.81i 0.313932 0.606308i
\(536\) 0 0
\(537\) 4473.23 + 4473.23i 0.359468 + 0.359468i
\(538\) 0 0
\(539\) 8989.42 0.718370
\(540\) 0 0
\(541\) −3081.17 −0.244861 −0.122430 0.992477i \(-0.539069\pi\)
−0.122430 + 0.992477i \(0.539069\pi\)
\(542\) 0 0
\(543\) −12207.0 12207.0i −0.964741 0.964741i
\(544\) 0 0
\(545\) −5007.46 15760.7i −0.393571 1.23874i
\(546\) 0 0
\(547\) −6184.51 + 6184.51i −0.483419 + 0.483419i −0.906222 0.422802i \(-0.861046\pi\)
0.422802 + 0.906222i \(0.361046\pi\)
\(548\) 0 0
\(549\) 16533.4i 1.28530i
\(550\) 0 0
\(551\) 868.888i 0.0671794i
\(552\) 0 0
\(553\) 4.72431 4.72431i 0.000363288 0.000363288i
\(554\) 0 0
\(555\) 7610.99 + 23955.2i 0.582105 + 1.83215i
\(556\) 0 0
\(557\) 2117.68 + 2117.68i 0.161093 + 0.161093i 0.783051 0.621958i \(-0.213662\pi\)
−0.621958 + 0.783051i \(0.713662\pi\)
\(558\) 0 0
\(559\) −24708.5 −1.86951
\(560\) 0 0
\(561\) −17153.6 −1.29095
\(562\) 0 0
\(563\) 5986.35 + 5986.35i 0.448125 + 0.448125i 0.894731 0.446606i \(-0.147367\pi\)
−0.446606 + 0.894731i \(0.647367\pi\)
\(564\) 0 0
\(565\) −2425.71 + 4684.86i −0.180620 + 0.348838i
\(566\) 0 0
\(567\) −1087.54 + 1087.54i −0.0805512 + 0.0805512i
\(568\) 0 0
\(569\) 11232.8i 0.827596i 0.910369 + 0.413798i \(0.135798\pi\)
−0.910369 + 0.413798i \(0.864202\pi\)
\(570\) 0 0
\(571\) 18982.2i 1.39121i −0.718423 0.695606i \(-0.755136\pi\)
0.718423 0.695606i \(-0.244864\pi\)
\(572\) 0 0
\(573\) 17749.3 17749.3i 1.29405 1.29405i
\(574\) 0 0
\(575\) −18882.3 3243.91i −1.36947 0.235270i
\(576\) 0 0
\(577\) 2310.66 + 2310.66i 0.166714 + 0.166714i 0.785533 0.618819i \(-0.212389\pi\)
−0.618819 + 0.785533i \(0.712389\pi\)
\(578\) 0 0
\(579\) −5326.53 −0.382320
\(580\) 0 0
\(581\) −2098.67 −0.149858
\(582\) 0 0
\(583\) −6340.43 6340.43i −0.450418 0.450418i
\(584\) 0 0
\(585\) 13994.6 + 7246.09i 0.989072 + 0.512118i
\(586\) 0 0
\(587\) 3134.61 3134.61i 0.220407 0.220407i −0.588263 0.808670i \(-0.700188\pi\)
0.808670 + 0.588263i \(0.200188\pi\)
\(588\) 0 0
\(589\) 7988.20i 0.558825i
\(590\) 0 0
\(591\) 20765.4i 1.44531i
\(592\) 0 0
\(593\) −2217.40 + 2217.40i −0.153554 + 0.153554i −0.779703 0.626149i \(-0.784630\pi\)
0.626149 + 0.779703i \(0.284630\pi\)
\(594\) 0 0
\(595\) −1814.18 + 576.398i −0.124999 + 0.0397143i
\(596\) 0 0
\(597\) −13272.1 13272.1i −0.909870 0.909870i
\(598\) 0 0
\(599\) −3238.95 −0.220935 −0.110467 0.993880i \(-0.535235\pi\)
−0.110467 + 0.993880i \(0.535235\pi\)
\(600\) 0 0
\(601\) 9080.07 0.616279 0.308140 0.951341i \(-0.400294\pi\)
0.308140 + 0.951341i \(0.400294\pi\)
\(602\) 0 0
\(603\) −3585.19 3585.19i −0.242123 0.242123i
\(604\) 0 0
\(605\) 6716.04 2133.80i 0.451315 0.143391i
\(606\) 0 0
\(607\) 1926.10 1926.10i 0.128794 0.128794i −0.639771 0.768565i \(-0.720971\pi\)
0.768565 + 0.639771i \(0.220971\pi\)
\(608\) 0 0
\(609\) 123.236i 0.00819993i
\(610\) 0 0
\(611\) 35907.1i 2.37749i
\(612\) 0 0
\(613\) 12046.5 12046.5i 0.793726 0.793726i −0.188372 0.982098i \(-0.560321\pi\)
0.982098 + 0.188372i \(0.0603210\pi\)
\(614\) 0 0
\(615\) 19918.6 + 10313.4i 1.30601 + 0.676221i
\(616\) 0 0
\(617\) 5140.77 + 5140.77i 0.335429 + 0.335429i 0.854644 0.519215i \(-0.173776\pi\)
−0.519215 + 0.854644i \(0.673776\pi\)
\(618\) 0 0
\(619\) 26915.2 1.74768 0.873841 0.486212i \(-0.161622\pi\)
0.873841 + 0.486212i \(0.161622\pi\)
\(620\) 0 0
\(621\) 5046.84 0.326124
\(622\) 0 0
\(623\) −851.830 851.830i −0.0547798 0.0547798i
\(624\) 0 0
\(625\) 5214.73 14729.1i 0.333743 0.942664i
\(626\) 0 0
\(627\) −12006.6 + 12006.6i −0.764748 + 0.764748i
\(628\) 0 0
\(629\) 29544.0i 1.87281i
\(630\) 0 0
\(631\) 3852.28i 0.243038i −0.992589 0.121519i \(-0.961224\pi\)
0.992589 0.121519i \(-0.0387765\pi\)
\(632\) 0 0
\(633\) −26693.9 + 26693.9i −1.67613 + 1.67613i
\(634\) 0 0
\(635\) 3005.45 5804.53i 0.187823 0.362749i
\(636\) 0 0
\(637\) 15170.9 + 15170.9i 0.943633 + 0.943633i
\(638\) 0 0
\(639\) −1514.25 −0.0937447
\(640\) 0 0
\(641\) 14531.1 0.895387 0.447694 0.894187i \(-0.352246\pi\)
0.447694 + 0.894187i \(0.352246\pi\)
\(642\) 0 0
\(643\) −17683.7 17683.7i −1.08457 1.08457i −0.996077 0.0884910i \(-0.971796\pi\)
−0.0884910 0.996077i \(-0.528204\pi\)
\(644\) 0 0
\(645\) 9297.50 + 29263.4i 0.567579 + 1.78643i
\(646\) 0 0
\(647\) −8971.25 + 8971.25i −0.545126 + 0.545126i −0.925027 0.379901i \(-0.875958\pi\)
0.379901 + 0.925027i \(0.375958\pi\)
\(648\) 0 0
\(649\) 14531.7i 0.878921i
\(650\) 0 0
\(651\) 1132.98i 0.0682102i
\(652\) 0 0
\(653\) 1316.94 1316.94i 0.0789214 0.0789214i −0.666544 0.745466i \(-0.732227\pi\)
0.745466 + 0.666544i \(0.232227\pi\)
\(654\) 0 0
\(655\) 5586.11 + 17582.0i 0.333232 + 1.04883i
\(656\) 0 0
\(657\) 8306.14 + 8306.14i 0.493232 + 0.493232i
\(658\) 0 0
\(659\) −13761.4 −0.813459 −0.406729 0.913549i \(-0.633331\pi\)
−0.406729 + 0.913549i \(0.633331\pi\)
\(660\) 0 0
\(661\) 24292.9 1.42948 0.714738 0.699392i \(-0.246546\pi\)
0.714738 + 0.699392i \(0.246546\pi\)
\(662\) 0 0
\(663\) −28949.1 28949.1i −1.69576 1.69576i
\(664\) 0 0
\(665\) −866.383 + 1673.28i −0.0505216 + 0.0975743i
\(666\) 0 0
\(667\) −1030.90 + 1030.90i −0.0598449 + 0.0598449i
\(668\) 0 0
\(669\) 8441.34i 0.487834i
\(670\) 0 0
\(671\) 19616.1i 1.12857i
\(672\) 0 0
\(673\) 2363.45 2363.45i 0.135370 0.135370i −0.636175 0.771545i \(-0.719484\pi\)
0.771545 + 0.636175i \(0.219484\pi\)
\(674\) 0 0
\(675\) −696.894 + 4056.51i −0.0397385 + 0.231311i
\(676\) 0 0
\(677\) 9.52502 + 9.52502i 0.000540733 + 0.000540733i 0.707377 0.706836i \(-0.249878\pi\)
−0.706836 + 0.707377i \(0.749878\pi\)
\(678\) 0 0
\(679\) 678.888 0.0383701
\(680\) 0 0
\(681\) 39852.6 2.24252
\(682\) 0 0
\(683\) 2412.55 + 2412.55i 0.135159 + 0.135159i 0.771449 0.636291i \(-0.219532\pi\)
−0.636291 + 0.771449i \(0.719532\pi\)
\(684\) 0 0
\(685\) −25212.2 13054.3i −1.40629 0.728143i
\(686\) 0 0
\(687\) −1145.16 + 1145.16i −0.0635962 + 0.0635962i
\(688\) 0 0
\(689\) 21400.8i 1.18332i
\(690\) 0 0
\(691\) 24706.7i 1.36018i 0.733128 + 0.680091i \(0.238060\pi\)
−0.733128 + 0.680091i \(0.761940\pi\)
\(692\) 0 0
\(693\) −770.488 + 770.488i −0.0422344 + 0.0422344i
\(694\) 0 0
\(695\) 19870.6 6313.26i 1.08451 0.344569i
\(696\) 0 0
\(697\) −18642.6 18642.6i −1.01311 1.01311i
\(698\) 0 0
\(699\) 2075.55 0.112310
\(700\) 0 0
\(701\) −12435.9 −0.670039 −0.335019 0.942211i \(-0.608743\pi\)
−0.335019 + 0.942211i \(0.608743\pi\)
\(702\) 0 0
\(703\) −20679.2 20679.2i −1.10943 1.10943i
\(704\) 0 0
\(705\) −42526.5 + 13511.4i −2.27183 + 0.721801i
\(706\) 0 0
\(707\) 386.748 386.748i 0.0205731 0.0205731i
\(708\) 0 0
\(709\) 14894.0i 0.788939i −0.918909 0.394469i \(-0.870928\pi\)
0.918909 0.394469i \(-0.129072\pi\)
\(710\) 0 0
\(711\) 80.7935i 0.00426160i
\(712\) 0 0
\(713\) 9477.66 9477.66i 0.497814 0.497814i
\(714\) 0 0
\(715\) −16604.0 8597.16i −0.868469 0.449672i
\(716\) 0 0
\(717\) 24282.5 + 24282.5i 1.26478 + 1.26478i
\(718\) 0 0
\(719\) −19874.4 −1.03086 −0.515432 0.856930i \(-0.672369\pi\)
−0.515432 + 0.856930i \(0.672369\pi\)
\(720\) 0 0
\(721\) −460.864 −0.0238051
\(722\) 0 0
\(723\) −11999.6 11999.6i −0.617250 0.617250i
\(724\) 0 0
\(725\) −686.256 970.959i −0.0351543 0.0497386i
\(726\) 0 0
\(727\) 965.676 965.676i 0.0492640 0.0492640i −0.682046 0.731310i \(-0.738909\pi\)
0.731310 + 0.682046i \(0.238909\pi\)
\(728\) 0 0
\(729\) 12355.8i 0.627738i
\(730\) 0 0
\(731\) 36090.7i 1.82608i
\(732\) 0 0
\(733\) −8560.56 + 8560.56i −0.431366 + 0.431366i −0.889093 0.457727i \(-0.848664\pi\)
0.457727 + 0.889093i \(0.348664\pi\)
\(734\) 0 0
\(735\) 12259.0 23676.3i 0.615212 1.18818i
\(736\) 0 0
\(737\) 4253.67 + 4253.67i 0.212600 + 0.212600i
\(738\) 0 0
\(739\) 27397.3 1.36377 0.681886 0.731458i \(-0.261160\pi\)
0.681886 + 0.731458i \(0.261160\pi\)
\(740\) 0 0
\(741\) −40525.6 −2.00911
\(742\) 0 0
\(743\) −9432.24 9432.24i −0.465727 0.465727i 0.434800 0.900527i \(-0.356819\pi\)
−0.900527 + 0.434800i \(0.856819\pi\)
\(744\) 0 0
\(745\) −4118.53 12962.8i −0.202538 0.637479i
\(746\) 0 0
\(747\) −17945.4 + 17945.4i −0.878966 + 0.878966i
\(748\) 0 0
\(749\) 1394.24i 0.0680168i
\(750\) 0 0
\(751\) 30518.7i 1.48288i −0.671019 0.741440i \(-0.734143\pi\)
0.671019 0.741440i \(-0.265857\pi\)
\(752\) 0 0
\(753\) 29011.9 29011.9i 1.40405 1.40405i
\(754\) 0 0
\(755\) 4480.83 + 14103.2i 0.215992 + 0.679824i
\(756\) 0 0
\(757\) 16325.1 + 16325.1i 0.783814 + 0.783814i 0.980472 0.196658i \(-0.0630090\pi\)
−0.196658 + 0.980472i \(0.563009\pi\)
\(758\) 0 0
\(759\) 28490.6 1.36251
\(760\) 0 0
\(761\) 15012.5 0.715114 0.357557 0.933891i \(-0.383610\pi\)
0.357557 + 0.933891i \(0.383610\pi\)
\(762\) 0 0
\(763\) 1929.67 + 1929.67i 0.0915580 + 0.0915580i
\(764\) 0 0
\(765\) −10584.1 + 20441.4i −0.500220 + 0.966093i
\(766\) 0 0
\(767\) −24524.4 + 24524.4i −1.15453 + 1.15453i
\(768\) 0 0
\(769\) 15829.7i 0.742306i −0.928572 0.371153i \(-0.878963\pi\)
0.928572 0.371153i \(-0.121037\pi\)
\(770\) 0 0
\(771\) 31043.8i 1.45008i
\(772\) 0 0
\(773\) −23486.9 + 23486.9i −1.09284 + 1.09284i −0.0976135 + 0.995224i \(0.531121\pi\)
−0.995224 + 0.0976135i \(0.968879\pi\)
\(774\) 0 0
\(775\) 6309.15 + 8926.60i 0.292428 + 0.413746i
\(776\) 0 0
\(777\) −2932.96 2932.96i −0.135418 0.135418i
\(778\) 0 0
\(779\) −26097.7 −1.20032
\(780\) 0 0
\(781\) 1796.59 0.0823138
\(782\) 0 0
\(783\) 221.469 + 221.469i 0.0101081 + 0.0101081i
\(784\) 0 0
\(785\) −17247.9 8930.53i −0.784207 0.406043i
\(786\) 0 0
\(787\) −9415.74 + 9415.74i −0.426474 + 0.426474i −0.887425 0.460952i \(-0.847508\pi\)
0.460952 + 0.887425i \(0.347508\pi\)
\(788\) 0 0
\(789\) 4205.79i 0.189772i
\(790\) 0 0
\(791\) 870.586i 0.0391333i
\(792\) 0 0
\(793\) −33105.0 + 33105.0i −1.48246 + 1.48246i
\(794\) 0 0
\(795\) −25346.0 + 8052.86i −1.13073 + 0.359252i
\(796\) 0 0
\(797\) −7971.30 7971.30i −0.354276 0.354276i 0.507422 0.861698i \(-0.330599\pi\)
−0.861698 + 0.507422i \(0.830599\pi\)
\(798\) 0 0
\(799\) 52448.1 2.32225
\(800\) 0 0
\(801\) −14567.7 −0.642602
\(802\) 0 0
\(803\) −9854.86 9854.86i −0.433089 0.433089i
\(804\) 0 0
\(805\) 3013.20 957.347i 0.131927 0.0419156i
\(806\) 0 0
\(807\) −2293.93 + 2293.93i −0.100062 + 0.100062i
\(808\) 0 0
\(809\) 42121.9i 1.83056i −0.402814 0.915282i \(-0.631968\pi\)
0.402814 0.915282i \(-0.368032\pi\)
\(810\) 0 0
\(811\) 11544.1i 0.499838i −0.968267 0.249919i \(-0.919596\pi\)
0.968267 0.249919i \(-0.0804040\pi\)
\(812\) 0 0
\(813\) 1782.34 1782.34i 0.0768872 0.0768872i
\(814\) 0 0
\(815\) 34843.8 + 18041.3i 1.49758 + 0.775410i
\(816\) 0 0
\(817\) −25261.5 25261.5i −1.08175 1.08175i
\(818\) 0 0
\(819\) −2600.62 −0.110956
\(820\) 0 0
\(821\) −1537.35 −0.0653518 −0.0326759 0.999466i \(-0.510403\pi\)
−0.0326759 + 0.999466i \(0.510403\pi\)
\(822\) 0 0
\(823\) 1127.89 + 1127.89i 0.0477714 + 0.0477714i 0.730589 0.682818i \(-0.239246\pi\)
−0.682818 + 0.730589i \(0.739246\pi\)
\(824\) 0 0
\(825\) −3934.13 + 22899.9i −0.166023 + 0.966393i
\(826\) 0 0
\(827\) −2821.68 + 2821.68i −0.118645 + 0.118645i −0.763937 0.645291i \(-0.776736\pi\)
0.645291 + 0.763937i \(0.276736\pi\)
\(828\) 0 0
\(829\) 21939.1i 0.919151i −0.888139 0.459575i \(-0.848002\pi\)
0.888139 0.459575i \(-0.151998\pi\)
\(830\) 0 0
\(831\) 1266.54i 0.0528709i
\(832\) 0 0
\(833\) −22159.6 + 22159.6i −0.921709 + 0.921709i
\(834\) 0 0
\(835\) 11492.5 22195.8i 0.476303 0.919903i
\(836\) 0 0
\(837\) −2036.10 2036.10i −0.0840835 0.0840835i
\(838\) 0 0
\(839\) −31924.7 −1.31366 −0.656831 0.754038i \(-0.728104\pi\)
−0.656831 + 0.754038i \(0.728104\pi\)
\(840\) 0 0
\(841\) 24298.5 0.996290
\(842\) 0 0
\(843\) 29328.9 + 29328.9i 1.19827 + 1.19827i
\(844\) 0 0
\(845\) −6074.93 19120.5i −0.247318 0.778422i
\(846\) 0 0
\(847\) −822.281 + 822.281i −0.0333576 + 0.0333576i
\(848\) 0 0
\(849\) 26682.1i 1.07860i
\(850\) 0 0
\(851\) 49070.1i 1.97662i
\(852\) 0 0
\(853\) −1821.97 + 1821.97i −0.0731337 + 0.0731337i −0.742728 0.669594i \(-0.766468\pi\)
0.669594 + 0.742728i \(0.266468\pi\)
\(854\) 0 0
\(855\) 6899.62 + 21716.2i 0.275979 + 0.868629i
\(856\) 0 0
\(857\) −4529.29 4529.29i −0.180534 0.180534i 0.611054 0.791589i \(-0.290746\pi\)
−0.791589 + 0.611054i \(0.790746\pi\)
\(858\) 0 0
\(859\) 8593.70 0.341342 0.170671 0.985328i \(-0.445406\pi\)
0.170671 + 0.985328i \(0.445406\pi\)
\(860\) 0 0
\(861\) −3701.47 −0.146511
\(862\) 0 0
\(863\) 30314.5 + 30314.5i 1.19573 + 1.19573i 0.975432 + 0.220301i \(0.0707039\pi\)
0.220301 + 0.975432i \(0.429296\pi\)
\(864\) 0 0
\(865\) 5899.11 11393.2i 0.231880 0.447838i
\(866\) 0 0
\(867\) 17889.7 17889.7i 0.700767 0.700767i
\(868\) 0 0
\(869\) 95.8579i 0.00374195i
\(870\) 0 0
\(871\) 14357.3i 0.558530i
\(872\) 0 0
\(873\) 5805.05 5805.05i 0.225053 0.225053i
\(874\) 0 0
\(875\) 353.410 + 2554.12i 0.0136542 + 0.0986800i
\(876\) 0 0
\(877\) 17952.6 + 17952.6i 0.691239 + 0.691239i 0.962504 0.271266i \(-0.0874422\pi\)
−0.271266 + 0.962504i \(0.587442\pi\)
\(878\) 0 0
\(879\) 25737.8 0.987615
\(880\) 0 0
\(881\) 21855.6 0.835792 0.417896 0.908495i \(-0.362768\pi\)
0.417896 + 0.908495i \(0.362768\pi\)
\(882\) 0 0
\(883\) 12704.5 + 12704.5i 0.484192 + 0.484192i 0.906468 0.422275i \(-0.138768\pi\)
−0.422275 + 0.906468i \(0.638768\pi\)
\(884\) 0 0
\(885\) 38273.6 + 19817.1i 1.45373 + 0.752707i
\(886\) 0 0
\(887\) −19861.9 + 19861.9i −0.751858 + 0.751858i −0.974826 0.222968i \(-0.928426\pi\)
0.222968 + 0.974826i \(0.428426\pi\)
\(888\) 0 0
\(889\) 1078.65i 0.0406939i
\(890\) 0 0
\(891\) 22066.6i 0.829697i
\(892\) 0 0
\(893\) 36710.9 36710.9i 1.37568 1.37568i
\(894\) 0 0
\(895\) −9599.25 + 3049.85i −0.358511 + 0.113905i
\(896\) 0 0
\(897\) 48082.0 + 48082.0i 1.78975 + 1.78975i
\(898\) 0 0
\(899\) 831.811 0.0308592
\(900\) 0 0
\(901\) 31259.3 1.15582
\(902\) 0 0
\(903\) −3582.88 3582.88i −0.132038 0.132038i
\(904\) 0 0
\(905\) 26195.5 8322.76i 0.962173 0.305699i
\(906\) 0 0
\(907\) −34271.6 + 34271.6i −1.25465 + 1.25465i −0.301039 + 0.953612i \(0.597333\pi\)
−0.953612 + 0.301039i \(0.902667\pi\)
\(908\) 0 0
\(909\) 6614.03i 0.241335i
\(910\) 0 0
\(911\) 28286.7i 1.02874i −0.857569 0.514370i \(-0.828026\pi\)
0.857569 0.514370i \(-0.171974\pi\)
\(912\) 0 0
\(913\) 21291.4 21291.4i 0.771789 0.771789i
\(914\) 0 0
\(915\) 51664.8 + 26750.8i 1.86665 + 0.966507i
\(916\) 0 0
\(917\) −2152.66 2152.66i −0.0775213 0.0775213i
\(918\) 0 0
\(919\) −50078.4 −1.79754 −0.898768 0.438425i \(-0.855537\pi\)
−0.898768 + 0.438425i \(0.855537\pi\)
\(920\) 0 0
\(921\) −64489.5 −2.30728
\(922\) 0 0
\(923\) 3032.00 + 3032.00i 0.108125 + 0.108125i
\(924\) 0 0
\(925\) −39441.1 6775.85i −1.40196 0.240852i
\(926\) 0 0
\(927\) −3940.77 + 3940.77i −0.139624 + 0.139624i
\(928\) 0 0
\(929\) 33711.0i 1.19055i 0.803522 + 0.595275i \(0.202957\pi\)
−0.803522 + 0.595275i \(0.797043\pi\)
\(930\) 0 0
\(931\) 31021.0i 1.09202i
\(932\) 0 0
\(933\) −30648.8 + 30648.8i −1.07545 + 1.07545i
\(934\) 0 0
\(935\) 12557.5 24252.8i 0.439225 0.848292i
\(936\) 0 0
\(937\) 258.796 + 258.796i 0.00902294 + 0.00902294i 0.711604 0.702581i \(-0.247969\pi\)
−0.702581 + 0.711604i \(0.747969\pi\)
\(938\) 0 0
\(939\) 38338.6 1.33241
\(940\) 0 0
\(941\) −11887.5 −0.411817 −0.205909 0.978571i \(-0.566015\pi\)
−0.205909 + 0.978571i \(0.566015\pi\)
\(942\) 0 0
\(943\) 30963.8 + 30963.8i 1.06927 + 1.06927i
\(944\) 0 0
\(945\) −205.668 647.330i −0.00707977 0.0222832i
\(946\) 0 0
\(947\) 15621.4 15621.4i 0.536037 0.536037i −0.386326 0.922362i \(-0.626256\pi\)
0.922362 + 0.386326i \(0.126256\pi\)
\(948\) 0 0
\(949\) 33263.0i 1.13779i
\(950\) 0 0
\(951\) 26668.1i 0.909328i
\(952\) 0 0
\(953\) −1813.00 + 1813.00i −0.0616251 + 0.0616251i −0.737248 0.675623i \(-0.763875\pi\)
0.675623 + 0.737248i \(0.263875\pi\)
\(954\) 0 0
\(955\) 12101.5 + 38088.8i 0.410047 + 1.29060i
\(956\) 0 0
\(957\) 1250.25 + 1250.25i 0.0422306 + 0.0422306i
\(958\) 0 0
\(959\) 4685.17 0.157760
\(960\) 0 0
\(961\) 22143.7 0.743301
\(962\) 0 0
\(963\) 11921.9 + 11921.9i 0.398940 + 0.398940i
\(964\) 0 0
\(965\) 3899.37 7531.00i 0.130078 0.251224i
\(966\) 0 0
\(967\) 27754.8 27754.8i 0.922993 0.922993i −0.0742472 0.997240i \(-0.523655\pi\)
0.997240 + 0.0742472i \(0.0236554\pi\)
\(968\) 0 0
\(969\) 59194.2i 1.96243i
\(970\) 0 0
\(971\) 9248.74i 0.305671i −0.988252 0.152835i \(-0.951160\pi\)
0.988252 0.152835i \(-0.0488404\pi\)
\(972\) 0 0
\(973\) −2432.87 + 2432.87i −0.0801586 + 0.0801586i
\(974\) 0 0
\(975\) −45286.3 + 32007.5i −1.48751 + 1.05134i
\(976\) 0 0
\(977\) 20409.9 + 20409.9i 0.668344 + 0.668344i 0.957332 0.288989i \(-0.0933190\pi\)
−0.288989 + 0.957332i \(0.593319\pi\)
\(978\) 0 0
\(979\) 17283.9 0.564246
\(980\) 0 0
\(981\) 33000.6 1.07403
\(982\) 0 0
\(983\) −21268.7 21268.7i −0.690098 0.690098i 0.272155 0.962253i \(-0.412263\pi\)
−0.962253 + 0.272155i \(0.912263\pi\)
\(984\) 0 0
\(985\) 29359.5 + 15201.6i 0.949718 + 0.491741i
\(986\) 0 0
\(987\) 5206.76 5206.76i 0.167916 0.167916i
\(988\) 0 0
\(989\) 59943.5i 1.92729i
\(990\) 0 0
\(991\) 885.856i 0.0283957i −0.999899 0.0141979i \(-0.995481\pi\)
0.999899 0.0141979i \(-0.00451947\pi\)
\(992\) 0 0
\(993\) 12239.5 12239.5i 0.391148 0.391148i
\(994\) 0 0
\(995\) 28481.1 9048.94i 0.907448 0.288312i
\(996\) 0 0
\(997\) −27624.7 27624.7i −0.877515 0.877515i 0.115762 0.993277i \(-0.463069\pi\)
−0.993277 + 0.115762i \(0.963069\pi\)
\(998\) 0 0
\(999\) 10541.8 0.333861
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.n.h.127.1 8
4.3 odd 2 320.4.n.g.127.4 8
5.3 odd 4 320.4.n.g.63.4 8
8.3 odd 2 160.4.n.e.127.1 yes 8
8.5 even 2 160.4.n.d.127.4 yes 8
20.3 even 4 inner 320.4.n.h.63.1 8
40.3 even 4 160.4.n.d.63.4 8
40.13 odd 4 160.4.n.e.63.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.n.d.63.4 8 40.3 even 4
160.4.n.d.127.4 yes 8 8.5 even 2
160.4.n.e.63.1 yes 8 40.13 odd 4
160.4.n.e.127.1 yes 8 8.3 odd 2
320.4.n.g.63.4 8 5.3 odd 4
320.4.n.g.127.4 8 4.3 odd 2
320.4.n.h.63.1 8 20.3 even 4 inner
320.4.n.h.127.1 8 1.1 even 1 trivial