Properties

Label 320.4.n.h.63.3
Level $320$
Weight $4$
Character 320.63
Analytic conductor $18.881$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(63,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.63"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,2,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 22x^{5} + 532x^{4} - 636x^{3} + 450x^{2} + 2160x + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.3
Root \(-3.22067 - 3.22067i\) of defining polynomial
Character \(\chi\) \(=\) 320.63
Dual form 320.4.n.h.127.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.64336 - 3.64336i) q^{3} +(-0.725933 + 11.1567i) q^{5} +(9.23932 + 9.23932i) q^{7} +0.451865i q^{9} -29.0521i q^{11} +(22.1709 + 22.1709i) q^{13} +(38.0032 + 43.2929i) q^{15} +(-68.5560 + 68.5560i) q^{17} +46.3417 q^{19} +67.3243 q^{21} +(-82.3020 + 82.3020i) q^{23} +(-123.946 - 16.1981i) q^{25} +(100.017 + 100.017i) q^{27} +110.111i q^{29} +250.150i q^{31} +(-105.847 - 105.847i) q^{33} +(-109.788 + 96.3737i) q^{35} +(190.450 - 190.450i) q^{37} +161.553 q^{39} +386.818 q^{41} +(215.698 - 215.698i) q^{43} +(-5.04135 - 0.328024i) q^{45} +(258.459 + 258.459i) q^{47} -172.270i q^{49} +499.548i q^{51} +(-313.780 - 313.780i) q^{53} +(324.127 + 21.0899i) q^{55} +(168.840 - 168.840i) q^{57} +195.564 q^{59} -423.865 q^{61} +(-4.17493 + 4.17493i) q^{63} +(-263.449 + 231.260i) q^{65} +(598.492 + 598.492i) q^{67} +599.711i q^{69} -993.953i q^{71} +(22.8188 + 22.8188i) q^{73} +(-510.595 + 392.564i) q^{75} +(268.421 - 268.421i) q^{77} -612.099 q^{79} +716.595 q^{81} +(-176.546 + 176.546i) q^{83} +(-715.095 - 814.629i) q^{85} +(401.174 + 401.174i) q^{87} +1256.16i q^{89} +409.688i q^{91} +(911.388 + 911.388i) q^{93} +(-33.6410 + 517.023i) q^{95} +(269.898 - 269.898i) q^{97} +13.1276 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} + 14 q^{5} - 10 q^{7} + 32 q^{13} - 22 q^{15} + 44 q^{17} + 80 q^{19} - 236 q^{21} - 230 q^{23} - 44 q^{25} + 80 q^{27} - 260 q^{33} - 866 q^{35} + 292 q^{37} - 1068 q^{39} + 932 q^{41} + 458 q^{43}+ \cdots + 1844 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.64336 3.64336i 0.701165 0.701165i −0.263496 0.964661i \(-0.584875\pi\)
0.964661 + 0.263496i \(0.0848755\pi\)
\(4\) 0 0
\(5\) −0.725933 + 11.1567i −0.0649294 + 0.997890i
\(6\) 0 0
\(7\) 9.23932 + 9.23932i 0.498876 + 0.498876i 0.911088 0.412212i \(-0.135244\pi\)
−0.412212 + 0.911088i \(0.635244\pi\)
\(8\) 0 0
\(9\) 0.451865i 0.0167358i
\(10\) 0 0
\(11\) 29.0521i 0.796321i −0.917316 0.398161i \(-0.869649\pi\)
0.917316 0.398161i \(-0.130351\pi\)
\(12\) 0 0
\(13\) 22.1709 + 22.1709i 0.473007 + 0.473007i 0.902886 0.429879i \(-0.141444\pi\)
−0.429879 + 0.902886i \(0.641444\pi\)
\(14\) 0 0
\(15\) 38.0032 + 43.2929i 0.654159 + 0.745211i
\(16\) 0 0
\(17\) −68.5560 + 68.5560i −0.978075 + 0.978075i −0.999765 0.0216896i \(-0.993095\pi\)
0.0216896 + 0.999765i \(0.493095\pi\)
\(18\) 0 0
\(19\) 46.3417 0.559554 0.279777 0.960065i \(-0.409739\pi\)
0.279777 + 0.960065i \(0.409739\pi\)
\(20\) 0 0
\(21\) 67.3243 0.699589
\(22\) 0 0
\(23\) −82.3020 + 82.3020i −0.746137 + 0.746137i −0.973751 0.227614i \(-0.926907\pi\)
0.227614 + 0.973751i \(0.426907\pi\)
\(24\) 0 0
\(25\) −123.946 16.1981i −0.991568 0.129585i
\(26\) 0 0
\(27\) 100.017 + 100.017i 0.712899 + 0.712899i
\(28\) 0 0
\(29\) 110.111i 0.705072i 0.935798 + 0.352536i \(0.114681\pi\)
−0.935798 + 0.352536i \(0.885319\pi\)
\(30\) 0 0
\(31\) 250.150i 1.44930i 0.689116 + 0.724651i \(0.257999\pi\)
−0.689116 + 0.724651i \(0.742001\pi\)
\(32\) 0 0
\(33\) −105.847 105.847i −0.558352 0.558352i
\(34\) 0 0
\(35\) −109.788 + 96.3737i −0.530215 + 0.465432i
\(36\) 0 0
\(37\) 190.450 190.450i 0.846212 0.846212i −0.143446 0.989658i \(-0.545818\pi\)
0.989658 + 0.143446i \(0.0458183\pi\)
\(38\) 0 0
\(39\) 161.553 0.663312
\(40\) 0 0
\(41\) 386.818 1.47344 0.736718 0.676200i \(-0.236375\pi\)
0.736718 + 0.676200i \(0.236375\pi\)
\(42\) 0 0
\(43\) 215.698 215.698i 0.764969 0.764969i −0.212247 0.977216i \(-0.568078\pi\)
0.977216 + 0.212247i \(0.0680781\pi\)
\(44\) 0 0
\(45\) −5.04135 0.328024i −0.0167004 0.00108664i
\(46\) 0 0
\(47\) 258.459 + 258.459i 0.802130 + 0.802130i 0.983428 0.181298i \(-0.0580300\pi\)
−0.181298 + 0.983428i \(0.558030\pi\)
\(48\) 0 0
\(49\) 172.270i 0.502245i
\(50\) 0 0
\(51\) 499.548i 1.37158i
\(52\) 0 0
\(53\) −313.780 313.780i −0.813225 0.813225i 0.171891 0.985116i \(-0.445012\pi\)
−0.985116 + 0.171891i \(0.945012\pi\)
\(54\) 0 0
\(55\) 324.127 + 21.0899i 0.794641 + 0.0517046i
\(56\) 0 0
\(57\) 168.840 168.840i 0.392340 0.392340i
\(58\) 0 0
\(59\) 195.564 0.431531 0.215765 0.976445i \(-0.430775\pi\)
0.215765 + 0.976445i \(0.430775\pi\)
\(60\) 0 0
\(61\) −423.865 −0.889677 −0.444838 0.895611i \(-0.646739\pi\)
−0.444838 + 0.895611i \(0.646739\pi\)
\(62\) 0 0
\(63\) −4.17493 + 4.17493i −0.00834907 + 0.00834907i
\(64\) 0 0
\(65\) −263.449 + 231.260i −0.502721 + 0.441297i
\(66\) 0 0
\(67\) 598.492 + 598.492i 1.09130 + 1.09130i 0.995389 + 0.0959153i \(0.0305778\pi\)
0.0959153 + 0.995389i \(0.469422\pi\)
\(68\) 0 0
\(69\) 599.711i 1.04633i
\(70\) 0 0
\(71\) 993.953i 1.66141i −0.556709 0.830707i \(-0.687936\pi\)
0.556709 0.830707i \(-0.312064\pi\)
\(72\) 0 0
\(73\) 22.8188 + 22.8188i 0.0365854 + 0.0365854i 0.725163 0.688577i \(-0.241764\pi\)
−0.688577 + 0.725163i \(0.741764\pi\)
\(74\) 0 0
\(75\) −510.595 + 392.564i −0.786113 + 0.604393i
\(76\) 0 0
\(77\) 268.421 268.421i 0.397266 0.397266i
\(78\) 0 0
\(79\) −612.099 −0.871728 −0.435864 0.900013i \(-0.643557\pi\)
−0.435864 + 0.900013i \(0.643557\pi\)
\(80\) 0 0
\(81\) 716.595 0.982984
\(82\) 0 0
\(83\) −176.546 + 176.546i −0.233476 + 0.233476i −0.814142 0.580666i \(-0.802792\pi\)
0.580666 + 0.814142i \(0.302792\pi\)
\(84\) 0 0
\(85\) −715.095 814.629i −0.912505 1.03952i
\(86\) 0 0
\(87\) 401.174 + 401.174i 0.494372 + 0.494372i
\(88\) 0 0
\(89\) 1256.16i 1.49610i 0.663643 + 0.748049i \(0.269009\pi\)
−0.663643 + 0.748049i \(0.730991\pi\)
\(90\) 0 0
\(91\) 409.688i 0.471944i
\(92\) 0 0
\(93\) 911.388 + 911.388i 1.01620 + 1.01620i
\(94\) 0 0
\(95\) −33.6410 + 517.023i −0.0363315 + 0.558373i
\(96\) 0 0
\(97\) 269.898 269.898i 0.282516 0.282516i −0.551596 0.834111i \(-0.685981\pi\)
0.834111 + 0.551596i \(0.185981\pi\)
\(98\) 0 0
\(99\) 13.1276 0.0133270
\(100\) 0 0
\(101\) −794.410 −0.782641 −0.391320 0.920255i \(-0.627982\pi\)
−0.391320 + 0.920255i \(0.627982\pi\)
\(102\) 0 0
\(103\) −13.6891 + 13.6891i −0.0130954 + 0.0130954i −0.713624 0.700529i \(-0.752948\pi\)
0.700529 + 0.713624i \(0.252948\pi\)
\(104\) 0 0
\(105\) −48.8729 + 751.121i −0.0454239 + 0.698113i
\(106\) 0 0
\(107\) −1132.24 1132.24i −1.02297 1.02297i −0.999730 0.0232410i \(-0.992601\pi\)
−0.0232410 0.999730i \(-0.507399\pi\)
\(108\) 0 0
\(109\) 1611.09i 1.41573i 0.706347 + 0.707866i \(0.250342\pi\)
−0.706347 + 0.707866i \(0.749658\pi\)
\(110\) 0 0
\(111\) 1387.76i 1.18667i
\(112\) 0 0
\(113\) −1283.90 1283.90i −1.06884 1.06884i −0.997448 0.0713924i \(-0.977256\pi\)
−0.0713924 0.997448i \(-0.522744\pi\)
\(114\) 0 0
\(115\) −858.477 977.968i −0.696116 0.793009i
\(116\) 0 0
\(117\) −10.0182 + 10.0182i −0.00791613 + 0.00791613i
\(118\) 0 0
\(119\) −1266.82 −0.975877
\(120\) 0 0
\(121\) 486.977 0.365873
\(122\) 0 0
\(123\) 1409.32 1409.32i 1.03312 1.03312i
\(124\) 0 0
\(125\) 270.695 1371.08i 0.193693 0.981062i
\(126\) 0 0
\(127\) 634.636 + 634.636i 0.443424 + 0.443424i 0.893161 0.449737i \(-0.148482\pi\)
−0.449737 + 0.893161i \(0.648482\pi\)
\(128\) 0 0
\(129\) 1571.73i 1.07274i
\(130\) 0 0
\(131\) 1439.02i 0.959751i −0.877336 0.479876i \(-0.840682\pi\)
0.877336 0.479876i \(-0.159318\pi\)
\(132\) 0 0
\(133\) 428.166 + 428.166i 0.279148 + 0.279148i
\(134\) 0 0
\(135\) −1188.47 + 1043.26i −0.757683 + 0.665107i
\(136\) 0 0
\(137\) −778.649 + 778.649i −0.485580 + 0.485580i −0.906908 0.421328i \(-0.861564\pi\)
0.421328 + 0.906908i \(0.361564\pi\)
\(138\) 0 0
\(139\) 955.284 0.582922 0.291461 0.956583i \(-0.405859\pi\)
0.291461 + 0.956583i \(0.405859\pi\)
\(140\) 0 0
\(141\) 1883.32 1.12485
\(142\) 0 0
\(143\) 644.110 644.110i 0.376666 0.376666i
\(144\) 0 0
\(145\) −1228.48 79.9331i −0.703584 0.0457799i
\(146\) 0 0
\(147\) −627.641 627.641i −0.352156 0.352156i
\(148\) 0 0
\(149\) 2213.52i 1.21704i −0.793540 0.608518i \(-0.791764\pi\)
0.793540 0.608518i \(-0.208236\pi\)
\(150\) 0 0
\(151\) 3105.29i 1.67354i −0.547553 0.836771i \(-0.684440\pi\)
0.547553 0.836771i \(-0.315560\pi\)
\(152\) 0 0
\(153\) −30.9781 30.9781i −0.0163688 0.0163688i
\(154\) 0 0
\(155\) −2790.87 181.592i −1.44624 0.0941023i
\(156\) 0 0
\(157\) 457.388 457.388i 0.232507 0.232507i −0.581232 0.813738i \(-0.697429\pi\)
0.813738 + 0.581232i \(0.197429\pi\)
\(158\) 0 0
\(159\) −2286.42 −1.14041
\(160\) 0 0
\(161\) −1520.83 −0.744460
\(162\) 0 0
\(163\) 2156.05 2156.05i 1.03604 1.03604i 0.0367187 0.999326i \(-0.488309\pi\)
0.999326 0.0367187i \(-0.0116906\pi\)
\(164\) 0 0
\(165\) 1257.75 1104.07i 0.593428 0.520921i
\(166\) 0 0
\(167\) 1534.62 + 1534.62i 0.711094 + 0.711094i 0.966764 0.255670i \(-0.0822961\pi\)
−0.255670 + 0.966764i \(0.582296\pi\)
\(168\) 0 0
\(169\) 1213.90i 0.552528i
\(170\) 0 0
\(171\) 20.9402i 0.00936456i
\(172\) 0 0
\(173\) 1185.22 + 1185.22i 0.520872 + 0.520872i 0.917835 0.396963i \(-0.129936\pi\)
−0.396963 + 0.917835i \(0.629936\pi\)
\(174\) 0 0
\(175\) −995.518 1294.84i −0.430023 0.559317i
\(176\) 0 0
\(177\) 712.512 712.512i 0.302574 0.302574i
\(178\) 0 0
\(179\) −4187.67 −1.74861 −0.874304 0.485379i \(-0.838682\pi\)
−0.874304 + 0.485379i \(0.838682\pi\)
\(180\) 0 0
\(181\) −2925.93 −1.20156 −0.600781 0.799414i \(-0.705143\pi\)
−0.600781 + 0.799414i \(0.705143\pi\)
\(182\) 0 0
\(183\) −1544.29 + 1544.29i −0.623810 + 0.623810i
\(184\) 0 0
\(185\) 1986.55 + 2263.06i 0.789483 + 0.899371i
\(186\) 0 0
\(187\) 1991.70 + 1991.70i 0.778862 + 0.778862i
\(188\) 0 0
\(189\) 1848.18i 0.711297i
\(190\) 0 0
\(191\) 758.994i 0.287534i −0.989612 0.143767i \(-0.954078\pi\)
0.989612 0.143767i \(-0.0459215\pi\)
\(192\) 0 0
\(193\) −586.196 586.196i −0.218629 0.218629i 0.589292 0.807920i \(-0.299407\pi\)
−0.807920 + 0.589292i \(0.799407\pi\)
\(194\) 0 0
\(195\) −117.277 + 1802.41i −0.0430684 + 0.661912i
\(196\) 0 0
\(197\) −30.2257 + 30.2257i −0.0109314 + 0.0109314i −0.712551 0.701620i \(-0.752460\pi\)
0.701620 + 0.712551i \(0.252460\pi\)
\(198\) 0 0
\(199\) −1491.16 −0.531184 −0.265592 0.964085i \(-0.585567\pi\)
−0.265592 + 0.964085i \(0.585567\pi\)
\(200\) 0 0
\(201\) 4361.04 1.53037
\(202\) 0 0
\(203\) −1017.35 + 1017.35i −0.351744 + 0.351744i
\(204\) 0 0
\(205\) −280.804 + 4315.63i −0.0956693 + 1.47033i
\(206\) 0 0
\(207\) −37.1894 37.1894i −0.0124872 0.0124872i
\(208\) 0 0
\(209\) 1346.32i 0.445585i
\(210\) 0 0
\(211\) 3689.79i 1.20387i −0.798547 0.601933i \(-0.794398\pi\)
0.798547 0.601933i \(-0.205602\pi\)
\(212\) 0 0
\(213\) −3621.33 3621.33i −1.16493 1.16493i
\(214\) 0 0
\(215\) 2249.91 + 2563.07i 0.713686 + 0.813024i
\(216\) 0 0
\(217\) −2311.22 + 2311.22i −0.723023 + 0.723023i
\(218\) 0 0
\(219\) 166.274 0.0513049
\(220\) 0 0
\(221\) −3039.89 −0.925273
\(222\) 0 0
\(223\) 4144.87 4144.87i 1.24467 1.24467i 0.286626 0.958042i \(-0.407466\pi\)
0.958042 0.286626i \(-0.0925338\pi\)
\(224\) 0 0
\(225\) 7.31936 56.0069i 0.00216870 0.0165946i
\(226\) 0 0
\(227\) 4522.77 + 4522.77i 1.32241 + 1.32241i 0.911822 + 0.410587i \(0.134676\pi\)
0.410587 + 0.911822i \(0.365324\pi\)
\(228\) 0 0
\(229\) 1301.65i 0.375615i −0.982206 0.187807i \(-0.939862\pi\)
0.982206 0.187807i \(-0.0601380\pi\)
\(230\) 0 0
\(231\) 1955.91i 0.557098i
\(232\) 0 0
\(233\) 3272.46 + 3272.46i 0.920112 + 0.920112i 0.997037 0.0769247i \(-0.0245101\pi\)
−0.0769247 + 0.997037i \(0.524510\pi\)
\(234\) 0 0
\(235\) −3071.18 + 2695.94i −0.852519 + 0.748355i
\(236\) 0 0
\(237\) −2230.10 + 2230.10i −0.611225 + 0.611225i
\(238\) 0 0
\(239\) 4329.93 1.17188 0.585941 0.810354i \(-0.300725\pi\)
0.585941 + 0.810354i \(0.300725\pi\)
\(240\) 0 0
\(241\) −1311.41 −0.350520 −0.175260 0.984522i \(-0.556077\pi\)
−0.175260 + 0.984522i \(0.556077\pi\)
\(242\) 0 0
\(243\) −89.6445 + 89.6445i −0.0236654 + 0.0236654i
\(244\) 0 0
\(245\) 1921.97 + 125.056i 0.501185 + 0.0326104i
\(246\) 0 0
\(247\) 1027.44 + 1027.44i 0.264673 + 0.264673i
\(248\) 0 0
\(249\) 1286.44i 0.327410i
\(250\) 0 0
\(251\) 2488.09i 0.625684i 0.949805 + 0.312842i \(0.101281\pi\)
−0.949805 + 0.312842i \(0.898719\pi\)
\(252\) 0 0
\(253\) 2391.04 + 2391.04i 0.594165 + 0.594165i
\(254\) 0 0
\(255\) −5573.34 362.639i −1.36869 0.0890561i
\(256\) 0 0
\(257\) −2636.48 + 2636.48i −0.639919 + 0.639919i −0.950535 0.310616i \(-0.899465\pi\)
0.310616 + 0.950535i \(0.399465\pi\)
\(258\) 0 0
\(259\) 3519.27 0.844311
\(260\) 0 0
\(261\) −49.7553 −0.0117999
\(262\) 0 0
\(263\) 1573.96 1573.96i 0.369028 0.369028i −0.498095 0.867123i \(-0.665967\pi\)
0.867123 + 0.498095i \(0.165967\pi\)
\(264\) 0 0
\(265\) 3728.54 3272.98i 0.864312 0.758707i
\(266\) 0 0
\(267\) 4576.65 + 4576.65i 1.04901 + 1.04901i
\(268\) 0 0
\(269\) 5976.42i 1.35461i −0.735704 0.677303i \(-0.763149\pi\)
0.735704 0.677303i \(-0.236851\pi\)
\(270\) 0 0
\(271\) 3883.45i 0.870491i 0.900312 + 0.435246i \(0.143338\pi\)
−0.900312 + 0.435246i \(0.856662\pi\)
\(272\) 0 0
\(273\) 1492.64 + 1492.64i 0.330911 + 0.330911i
\(274\) 0 0
\(275\) −470.588 + 3600.89i −0.103191 + 0.789607i
\(276\) 0 0
\(277\) 136.325 136.325i 0.0295702 0.0295702i −0.692167 0.721737i \(-0.743344\pi\)
0.721737 + 0.692167i \(0.243344\pi\)
\(278\) 0 0
\(279\) −113.034 −0.0242552
\(280\) 0 0
\(281\) −3612.73 −0.766966 −0.383483 0.923548i \(-0.625275\pi\)
−0.383483 + 0.923548i \(0.625275\pi\)
\(282\) 0 0
\(283\) 3438.03 3438.03i 0.722155 0.722155i −0.246889 0.969044i \(-0.579408\pi\)
0.969044 + 0.246889i \(0.0794082\pi\)
\(284\) 0 0
\(285\) 1761.14 + 2006.27i 0.366037 + 0.416986i
\(286\) 0 0
\(287\) 3573.94 + 3573.94i 0.735062 + 0.735062i
\(288\) 0 0
\(289\) 4486.86i 0.913262i
\(290\) 0 0
\(291\) 1966.67i 0.396180i
\(292\) 0 0
\(293\) −1073.27 1073.27i −0.213996 0.213996i 0.591966 0.805963i \(-0.298352\pi\)
−0.805963 + 0.591966i \(0.798352\pi\)
\(294\) 0 0
\(295\) −141.967 + 2181.86i −0.0280190 + 0.430620i
\(296\) 0 0
\(297\) 2905.70 2905.70i 0.567697 0.567697i
\(298\) 0 0
\(299\) −3649.41 −0.705856
\(300\) 0 0
\(301\) 3985.81 0.763250
\(302\) 0 0
\(303\) −2894.32 + 2894.32i −0.548760 + 0.548760i
\(304\) 0 0
\(305\) 307.697 4728.95i 0.0577662 0.887800i
\(306\) 0 0
\(307\) 2493.39 + 2493.39i 0.463536 + 0.463536i 0.899812 0.436277i \(-0.143703\pi\)
−0.436277 + 0.899812i \(0.643703\pi\)
\(308\) 0 0
\(309\) 99.7488i 0.0183641i
\(310\) 0 0
\(311\) 4994.84i 0.910712i 0.890309 + 0.455356i \(0.150488\pi\)
−0.890309 + 0.455356i \(0.849512\pi\)
\(312\) 0 0
\(313\) −781.883 781.883i −0.141197 0.141197i 0.632975 0.774172i \(-0.281834\pi\)
−0.774172 + 0.632975i \(0.781834\pi\)
\(314\) 0 0
\(315\) −43.5479 49.6093i −0.00778936 0.00887356i
\(316\) 0 0
\(317\) 1141.41 1141.41i 0.202234 0.202234i −0.598723 0.800956i \(-0.704325\pi\)
0.800956 + 0.598723i \(0.204325\pi\)
\(318\) 0 0
\(319\) 3198.95 0.561464
\(320\) 0 0
\(321\) −8250.32 −1.43454
\(322\) 0 0
\(323\) −3177.01 + 3177.01i −0.547286 + 0.547286i
\(324\) 0 0
\(325\) −2388.87 3107.12i −0.407724 0.530314i
\(326\) 0 0
\(327\) 5869.79 + 5869.79i 0.992661 + 0.992661i
\(328\) 0 0
\(329\) 4775.97i 0.800327i
\(330\) 0 0
\(331\) 9143.85i 1.51840i −0.650856 0.759202i \(-0.725590\pi\)
0.650856 0.759202i \(-0.274410\pi\)
\(332\) 0 0
\(333\) 86.0579 + 86.0579i 0.0141620 + 0.0141620i
\(334\) 0 0
\(335\) −7111.69 + 6242.76i −1.15986 + 1.01814i
\(336\) 0 0
\(337\) 4458.95 4458.95i 0.720755 0.720755i −0.248004 0.968759i \(-0.579775\pi\)
0.968759 + 0.248004i \(0.0797746\pi\)
\(338\) 0 0
\(339\) −9355.41 −1.49887
\(340\) 0 0
\(341\) 7267.39 1.15411
\(342\) 0 0
\(343\) 4760.74 4760.74i 0.749434 0.749434i
\(344\) 0 0
\(345\) −6690.83 435.350i −1.04412 0.0679376i
\(346\) 0 0
\(347\) −1453.17 1453.17i −0.224813 0.224813i 0.585709 0.810522i \(-0.300816\pi\)
−0.810522 + 0.585709i \(0.800816\pi\)
\(348\) 0 0
\(349\) 458.850i 0.0703772i −0.999381 0.0351886i \(-0.988797\pi\)
0.999381 0.0351886i \(-0.0112032\pi\)
\(350\) 0 0
\(351\) 4434.93i 0.674413i
\(352\) 0 0
\(353\) 2666.42 + 2666.42i 0.402037 + 0.402037i 0.878950 0.476913i \(-0.158244\pi\)
−0.476913 + 0.878950i \(0.658244\pi\)
\(354\) 0 0
\(355\) 11089.3 + 721.543i 1.65791 + 0.107875i
\(356\) 0 0
\(357\) −4615.49 + 4615.49i −0.684251 + 0.684251i
\(358\) 0 0
\(359\) −6721.44 −0.988145 −0.494073 0.869421i \(-0.664492\pi\)
−0.494073 + 0.869421i \(0.664492\pi\)
\(360\) 0 0
\(361\) −4711.44 −0.686899
\(362\) 0 0
\(363\) 1774.23 1774.23i 0.256537 0.256537i
\(364\) 0 0
\(365\) −271.148 + 238.019i −0.0388837 + 0.0341328i
\(366\) 0 0
\(367\) 929.164 + 929.164i 0.132158 + 0.132158i 0.770091 0.637933i \(-0.220211\pi\)
−0.637933 + 0.770091i \(0.720211\pi\)
\(368\) 0 0
\(369\) 174.790i 0.0246590i
\(370\) 0 0
\(371\) 5798.22i 0.811398i
\(372\) 0 0
\(373\) −89.0374 89.0374i −0.0123597 0.0123597i 0.700900 0.713260i \(-0.252782\pi\)
−0.713260 + 0.700900i \(0.752782\pi\)
\(374\) 0 0
\(375\) −4009.09 5981.56i −0.552075 0.823697i
\(376\) 0 0
\(377\) −2441.26 + 2441.26i −0.333504 + 0.333504i
\(378\) 0 0
\(379\) 8951.06 1.21315 0.606576 0.795025i \(-0.292542\pi\)
0.606576 + 0.795025i \(0.292542\pi\)
\(380\) 0 0
\(381\) 4624.41 0.621826
\(382\) 0 0
\(383\) 3792.48 3792.48i 0.505970 0.505970i −0.407317 0.913287i \(-0.633536\pi\)
0.913287 + 0.407317i \(0.133536\pi\)
\(384\) 0 0
\(385\) 2799.85 + 3189.57i 0.370633 + 0.422222i
\(386\) 0 0
\(387\) 97.4666 + 97.4666i 0.0128023 + 0.0128023i
\(388\) 0 0
\(389\) 3116.97i 0.406264i 0.979151 + 0.203132i \(0.0651120\pi\)
−0.979151 + 0.203132i \(0.934888\pi\)
\(390\) 0 0
\(391\) 11284.6i 1.45956i
\(392\) 0 0
\(393\) −5242.85 5242.85i −0.672944 0.672944i
\(394\) 0 0
\(395\) 444.342 6829.03i 0.0566008 0.869888i
\(396\) 0 0
\(397\) 2645.06 2645.06i 0.334388 0.334388i −0.519862 0.854250i \(-0.674017\pi\)
0.854250 + 0.519862i \(0.174017\pi\)
\(398\) 0 0
\(399\) 3119.93 0.391458
\(400\) 0 0
\(401\) 248.852 0.0309902 0.0154951 0.999880i \(-0.495068\pi\)
0.0154951 + 0.999880i \(0.495068\pi\)
\(402\) 0 0
\(403\) −5546.05 + 5546.05i −0.685530 + 0.685530i
\(404\) 0 0
\(405\) −520.200 + 7994.87i −0.0638246 + 0.980910i
\(406\) 0 0
\(407\) −5532.98 5532.98i −0.673857 0.673857i
\(408\) 0 0
\(409\) 16002.4i 1.93464i 0.253565 + 0.967318i \(0.418397\pi\)
−0.253565 + 0.967318i \(0.581603\pi\)
\(410\) 0 0
\(411\) 5673.79i 0.680943i
\(412\) 0 0
\(413\) 1806.88 + 1806.88i 0.215281 + 0.215281i
\(414\) 0 0
\(415\) −1841.52 2097.84i −0.217824 0.248142i
\(416\) 0 0
\(417\) 3480.44 3480.44i 0.408724 0.408724i
\(418\) 0 0
\(419\) −6214.46 −0.724573 −0.362286 0.932067i \(-0.618004\pi\)
−0.362286 + 0.932067i \(0.618004\pi\)
\(420\) 0 0
\(421\) 6181.66 0.715619 0.357810 0.933795i \(-0.383524\pi\)
0.357810 + 0.933795i \(0.383524\pi\)
\(422\) 0 0
\(423\) −116.789 + 116.789i −0.0134242 + 0.0134242i
\(424\) 0 0
\(425\) 9607.73 7386.77i 1.09657 0.843085i
\(426\) 0 0
\(427\) −3916.22 3916.22i −0.443839 0.443839i
\(428\) 0 0
\(429\) 4693.45i 0.528209i
\(430\) 0 0
\(431\) 1261.72i 0.141009i 0.997511 + 0.0705043i \(0.0224608\pi\)
−0.997511 + 0.0705043i \(0.977539\pi\)
\(432\) 0 0
\(433\) 6691.55 + 6691.55i 0.742668 + 0.742668i 0.973091 0.230423i \(-0.0740109\pi\)
−0.230423 + 0.973091i \(0.574011\pi\)
\(434\) 0 0
\(435\) −4767.02 + 4184.57i −0.525428 + 0.461229i
\(436\) 0 0
\(437\) −3814.02 + 3814.02i −0.417504 + 0.417504i
\(438\) 0 0
\(439\) 686.081 0.0745897 0.0372948 0.999304i \(-0.488126\pi\)
0.0372948 + 0.999304i \(0.488126\pi\)
\(440\) 0 0
\(441\) 77.8428 0.00840544
\(442\) 0 0
\(443\) 933.427 933.427i 0.100109 0.100109i −0.655278 0.755388i \(-0.727449\pi\)
0.755388 + 0.655278i \(0.227449\pi\)
\(444\) 0 0
\(445\) −14014.7 911.888i −1.49294 0.0971408i
\(446\) 0 0
\(447\) −8064.64 8064.64i −0.853343 0.853343i
\(448\) 0 0
\(449\) 10101.6i 1.06175i 0.847450 + 0.530875i \(0.178137\pi\)
−0.847450 + 0.530875i \(0.821863\pi\)
\(450\) 0 0
\(451\) 11237.9i 1.17333i
\(452\) 0 0
\(453\) −11313.7 11313.7i −1.17343 1.17343i
\(454\) 0 0
\(455\) −4570.78 297.406i −0.470948 0.0306431i
\(456\) 0 0
\(457\) 6537.04 6537.04i 0.669124 0.669124i −0.288389 0.957513i \(-0.593120\pi\)
0.957513 + 0.288389i \(0.0931197\pi\)
\(458\) 0 0
\(459\) −13713.5 −1.39454
\(460\) 0 0
\(461\) −12652.2 −1.27825 −0.639124 0.769103i \(-0.720703\pi\)
−0.639124 + 0.769103i \(0.720703\pi\)
\(462\) 0 0
\(463\) 9841.39 9841.39i 0.987836 0.987836i −0.0120905 0.999927i \(-0.503849\pi\)
0.999927 + 0.0120905i \(0.00384862\pi\)
\(464\) 0 0
\(465\) −10829.7 + 9506.52i −1.08004 + 0.948074i
\(466\) 0 0
\(467\) −1406.79 1406.79i −0.139397 0.139397i 0.633965 0.773362i \(-0.281426\pi\)
−0.773362 + 0.633965i \(0.781426\pi\)
\(468\) 0 0
\(469\) 11059.3i 1.08885i
\(470\) 0 0
\(471\) 3332.86i 0.326051i
\(472\) 0 0
\(473\) −6266.48 6266.48i −0.609161 0.609161i
\(474\) 0 0
\(475\) −5743.88 750.648i −0.554836 0.0725097i
\(476\) 0 0
\(477\) 141.786 141.786i 0.0136099 0.0136099i
\(478\) 0 0
\(479\) −7266.01 −0.693095 −0.346548 0.938032i \(-0.612646\pi\)
−0.346548 + 0.938032i \(0.612646\pi\)
\(480\) 0 0
\(481\) 8444.90 0.800529
\(482\) 0 0
\(483\) −5540.93 + 5540.93i −0.521989 + 0.521989i
\(484\) 0 0
\(485\) 2815.26 + 3207.11i 0.263576 + 0.300263i
\(486\) 0 0
\(487\) −1881.59 1881.59i −0.175078 0.175078i 0.614128 0.789206i \(-0.289508\pi\)
−0.789206 + 0.614128i \(0.789508\pi\)
\(488\) 0 0
\(489\) 15710.6i 1.45288i
\(490\) 0 0
\(491\) 7998.87i 0.735201i 0.929984 + 0.367601i \(0.119821\pi\)
−0.929984 + 0.367601i \(0.880179\pi\)
\(492\) 0 0
\(493\) −7548.77 7548.77i −0.689613 0.689613i
\(494\) 0 0
\(495\) −9.52977 + 146.462i −0.000865316 + 0.0132989i
\(496\) 0 0
\(497\) 9183.45 9183.45i 0.828841 0.828841i
\(498\) 0 0
\(499\) 16852.3 1.51185 0.755926 0.654658i \(-0.227187\pi\)
0.755926 + 0.654658i \(0.227187\pi\)
\(500\) 0 0
\(501\) 11182.4 0.997188
\(502\) 0 0
\(503\) −5639.57 + 5639.57i −0.499912 + 0.499912i −0.911411 0.411498i \(-0.865006\pi\)
0.411498 + 0.911411i \(0.365006\pi\)
\(504\) 0 0
\(505\) 576.688 8863.03i 0.0508164 0.780989i
\(506\) 0 0
\(507\) −4422.69 4422.69i −0.387413 0.387413i
\(508\) 0 0
\(509\) 6988.53i 0.608568i −0.952581 0.304284i \(-0.901583\pi\)
0.952581 0.304284i \(-0.0984172\pi\)
\(510\) 0 0
\(511\) 421.660i 0.0365032i
\(512\) 0 0
\(513\) 4634.96 + 4634.96i 0.398906 + 0.398906i
\(514\) 0 0
\(515\) −142.789 162.664i −0.0122175 0.0139181i
\(516\) 0 0
\(517\) 7508.77 7508.77i 0.638753 0.638753i
\(518\) 0 0
\(519\) 8636.38 0.730434
\(520\) 0 0
\(521\) 17064.2 1.43493 0.717465 0.696595i \(-0.245302\pi\)
0.717465 + 0.696595i \(0.245302\pi\)
\(522\) 0 0
\(523\) −488.933 + 488.933i −0.0408787 + 0.0408787i −0.727251 0.686372i \(-0.759202\pi\)
0.686372 + 0.727251i \(0.259202\pi\)
\(524\) 0 0
\(525\) −8344.58 1090.53i −0.693691 0.0906561i
\(526\) 0 0
\(527\) −17149.3 17149.3i −1.41753 1.41753i
\(528\) 0 0
\(529\) 1380.24i 0.113441i
\(530\) 0 0
\(531\) 88.3688i 0.00722199i
\(532\) 0 0
\(533\) 8576.10 + 8576.10i 0.696946 + 0.696946i
\(534\) 0 0
\(535\) 13454.1 11810.2i 1.08723 0.954391i
\(536\) 0 0
\(537\) −15257.2 + 15257.2i −1.22606 + 1.22606i
\(538\) 0 0
\(539\) −5004.80 −0.399948
\(540\) 0 0
\(541\) 3084.77 0.245147 0.122573 0.992459i \(-0.460885\pi\)
0.122573 + 0.992459i \(0.460885\pi\)
\(542\) 0 0
\(543\) −10660.2 + 10660.2i −0.842492 + 0.842492i
\(544\) 0 0
\(545\) −17974.6 1169.54i −1.41274 0.0919226i
\(546\) 0 0
\(547\) −3748.46 3748.46i −0.293003 0.293003i 0.545262 0.838265i \(-0.316430\pi\)
−0.838265 + 0.545262i \(0.816430\pi\)
\(548\) 0 0
\(549\) 191.530i 0.0148894i
\(550\) 0 0
\(551\) 5102.73i 0.394526i
\(552\) 0 0
\(553\) −5655.38 5655.38i −0.434884 0.434884i
\(554\) 0 0
\(555\) 15482.9 + 1007.42i 1.18416 + 0.0770497i
\(556\) 0 0
\(557\) 10556.2 10556.2i 0.803017 0.803017i −0.180549 0.983566i \(-0.557788\pi\)
0.983566 + 0.180549i \(0.0577875\pi\)
\(558\) 0 0
\(559\) 9564.44 0.723672
\(560\) 0 0
\(561\) 14512.9 1.09222
\(562\) 0 0
\(563\) 10411.3 10411.3i 0.779371 0.779371i −0.200353 0.979724i \(-0.564209\pi\)
0.979724 + 0.200353i \(0.0642089\pi\)
\(564\) 0 0
\(565\) 15256.2 13392.1i 1.13598 0.997186i
\(566\) 0 0
\(567\) 6620.86 + 6620.86i 0.490388 + 0.490388i
\(568\) 0 0
\(569\) 7846.12i 0.578078i −0.957317 0.289039i \(-0.906664\pi\)
0.957317 0.289039i \(-0.0933357\pi\)
\(570\) 0 0
\(571\) 1800.64i 0.131970i −0.997821 0.0659848i \(-0.978981\pi\)
0.997821 0.0659848i \(-0.0210189\pi\)
\(572\) 0 0
\(573\) −2765.29 2765.29i −0.201608 0.201608i
\(574\) 0 0
\(575\) 11534.1 8867.87i 0.836534 0.643158i
\(576\) 0 0
\(577\) −15299.1 + 15299.1i −1.10383 + 1.10383i −0.109887 + 0.993944i \(0.535049\pi\)
−0.993944 + 0.109887i \(0.964951\pi\)
\(578\) 0 0
\(579\) −4271.45 −0.306589
\(580\) 0 0
\(581\) −3262.34 −0.232951
\(582\) 0 0
\(583\) −9115.95 + 9115.95i −0.647589 + 0.647589i
\(584\) 0 0
\(585\) −104.499 119.044i −0.00738544 0.00841342i
\(586\) 0 0
\(587\) 5400.19 + 5400.19i 0.379710 + 0.379710i 0.870997 0.491287i \(-0.163474\pi\)
−0.491287 + 0.870997i \(0.663474\pi\)
\(588\) 0 0
\(589\) 11592.4i 0.810963i
\(590\) 0 0
\(591\) 220.246i 0.0153295i
\(592\) 0 0
\(593\) 5379.58 + 5379.58i 0.372535 + 0.372535i 0.868400 0.495865i \(-0.165149\pi\)
−0.495865 + 0.868400i \(0.665149\pi\)
\(594\) 0 0
\(595\) 919.628 14133.6i 0.0633631 0.973818i
\(596\) 0 0
\(597\) −5432.84 + 5432.84i −0.372448 + 0.372448i
\(598\) 0 0
\(599\) −10474.4 −0.714476 −0.357238 0.934013i \(-0.616281\pi\)
−0.357238 + 0.934013i \(0.616281\pi\)
\(600\) 0 0
\(601\) −29203.8 −1.98211 −0.991055 0.133455i \(-0.957393\pi\)
−0.991055 + 0.133455i \(0.957393\pi\)
\(602\) 0 0
\(603\) −270.438 + 270.438i −0.0182638 + 0.0182638i
\(604\) 0 0
\(605\) −353.512 + 5433.08i −0.0237559 + 0.365101i
\(606\) 0 0
\(607\) 16886.0 + 16886.0i 1.12913 + 1.12913i 0.990319 + 0.138813i \(0.0443288\pi\)
0.138813 + 0.990319i \(0.455671\pi\)
\(608\) 0 0
\(609\) 7413.15i 0.493261i
\(610\) 0 0
\(611\) 11460.5i 0.758826i
\(612\) 0 0
\(613\) 7827.59 + 7827.59i 0.515748 + 0.515748i 0.916282 0.400534i \(-0.131175\pi\)
−0.400534 + 0.916282i \(0.631175\pi\)
\(614\) 0 0
\(615\) 14700.3 + 16746.5i 0.963861 + 1.09802i
\(616\) 0 0
\(617\) 11193.8 11193.8i 0.730383 0.730383i −0.240312 0.970696i \(-0.577250\pi\)
0.970696 + 0.240312i \(0.0772498\pi\)
\(618\) 0 0
\(619\) 13112.7 0.851445 0.425723 0.904854i \(-0.360020\pi\)
0.425723 + 0.904854i \(0.360020\pi\)
\(620\) 0 0
\(621\) −16463.2 −1.06384
\(622\) 0 0
\(623\) −11606.1 + 11606.1i −0.746368 + 0.746368i
\(624\) 0 0
\(625\) 15100.2 + 4015.38i 0.966416 + 0.256984i
\(626\) 0 0
\(627\) −4905.14 4905.14i −0.312428 0.312428i
\(628\) 0 0
\(629\) 26113.0i 1.65532i
\(630\) 0 0
\(631\) 26227.5i 1.65468i 0.561704 + 0.827338i \(0.310146\pi\)
−0.561704 + 0.827338i \(0.689854\pi\)
\(632\) 0 0
\(633\) −13443.2 13443.2i −0.844108 0.844108i
\(634\) 0 0
\(635\) −7541.17 + 6619.77i −0.471279 + 0.413697i
\(636\) 0 0
\(637\) 3819.37 3819.37i 0.237565 0.237565i
\(638\) 0 0
\(639\) 449.133 0.0278050
\(640\) 0 0
\(641\) −15346.9 −0.945659 −0.472829 0.881154i \(-0.656767\pi\)
−0.472829 + 0.881154i \(0.656767\pi\)
\(642\) 0 0
\(643\) 2266.75 2266.75i 0.139023 0.139023i −0.634170 0.773193i \(-0.718658\pi\)
0.773193 + 0.634170i \(0.218658\pi\)
\(644\) 0 0
\(645\) 17535.4 + 1140.97i 1.07048 + 0.0696523i
\(646\) 0 0
\(647\) −9000.05 9000.05i −0.546876 0.546876i 0.378660 0.925536i \(-0.376385\pi\)
−0.925536 + 0.378660i \(0.876385\pi\)
\(648\) 0 0
\(649\) 5681.55i 0.343637i
\(650\) 0 0
\(651\) 16841.2i 1.01392i
\(652\) 0 0
\(653\) 17384.8 + 17384.8i 1.04184 + 1.04184i 0.999086 + 0.0427498i \(0.0136118\pi\)
0.0427498 + 0.999086i \(0.486388\pi\)
\(654\) 0 0
\(655\) 16054.7 + 1044.63i 0.957726 + 0.0623161i
\(656\) 0 0
\(657\) −10.3110 + 10.3110i −0.000612285 + 0.000612285i
\(658\) 0 0
\(659\) 21162.3 1.25093 0.625467 0.780251i \(-0.284909\pi\)
0.625467 + 0.780251i \(0.284909\pi\)
\(660\) 0 0
\(661\) −9011.75 −0.530282 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(662\) 0 0
\(663\) −11075.4 + 11075.4i −0.648769 + 0.648769i
\(664\) 0 0
\(665\) −5087.76 + 4466.12i −0.296684 + 0.260434i
\(666\) 0 0
\(667\) −9062.35 9062.35i −0.526080 0.526080i
\(668\) 0 0
\(669\) 30202.5i 1.74544i
\(670\) 0 0
\(671\) 12314.1i 0.708468i
\(672\) 0 0
\(673\) 13638.8 + 13638.8i 0.781182 + 0.781182i 0.980030 0.198848i \(-0.0637201\pi\)
−0.198848 + 0.980030i \(0.563720\pi\)
\(674\) 0 0
\(675\) −10776.6 14016.8i −0.614508 0.799269i
\(676\) 0 0
\(677\) −14189.7 + 14189.7i −0.805543 + 0.805543i −0.983956 0.178412i \(-0.942904\pi\)
0.178412 + 0.983956i \(0.442904\pi\)
\(678\) 0 0
\(679\) 4987.35 0.281881
\(680\) 0 0
\(681\) 32956.1 1.85445
\(682\) 0 0
\(683\) −5657.98 + 5657.98i −0.316979 + 0.316979i −0.847606 0.530627i \(-0.821957\pi\)
0.530627 + 0.847606i \(0.321957\pi\)
\(684\) 0 0
\(685\) −8121.94 9252.43i −0.453027 0.516084i
\(686\) 0 0
\(687\) −4742.39 4742.39i −0.263368 0.263368i
\(688\) 0 0
\(689\) 13913.5i 0.769323i
\(690\) 0 0
\(691\) 34070.0i 1.87567i 0.347086 + 0.937833i \(0.387171\pi\)
−0.347086 + 0.937833i \(0.612829\pi\)
\(692\) 0 0
\(693\) 121.290 + 121.290i 0.00664854 + 0.00664854i
\(694\) 0 0
\(695\) −693.472 + 10657.9i −0.0378488 + 0.581692i
\(696\) 0 0
\(697\) −26518.7 + 26518.7i −1.44113 + 1.44113i
\(698\) 0 0
\(699\) 23845.5 1.29030
\(700\) 0 0
\(701\) −17802.0 −0.959160 −0.479580 0.877498i \(-0.659211\pi\)
−0.479580 + 0.877498i \(0.659211\pi\)
\(702\) 0 0
\(703\) 8825.81 8825.81i 0.473502 0.473502i
\(704\) 0 0
\(705\) −1367.16 + 21011.7i −0.0730358 + 1.12248i
\(706\) 0 0
\(707\) −7339.80 7339.80i −0.390441 0.390441i
\(708\) 0 0
\(709\) 19283.7i 1.02146i 0.859742 + 0.510729i \(0.170624\pi\)
−0.859742 + 0.510729i \(0.829376\pi\)
\(710\) 0 0
\(711\) 276.586i 0.0145890i
\(712\) 0 0
\(713\) −20587.9 20587.9i −1.08138 1.08138i
\(714\) 0 0
\(715\) 6718.59 + 7653.75i 0.351414 + 0.400327i
\(716\) 0 0
\(717\) 15775.5 15775.5i 0.821682 0.821682i
\(718\) 0 0
\(719\) 9212.84 0.477859 0.238930 0.971037i \(-0.423203\pi\)
0.238930 + 0.971037i \(0.423203\pi\)
\(720\) 0 0
\(721\) −252.957 −0.0130660
\(722\) 0 0
\(723\) −4777.94 + 4777.94i −0.245772 + 0.245772i
\(724\) 0 0
\(725\) 1783.59 13647.8i 0.0913666 0.699127i
\(726\) 0 0
\(727\) 4245.50 + 4245.50i 0.216585 + 0.216585i 0.807057 0.590473i \(-0.201059\pi\)
−0.590473 + 0.807057i \(0.701059\pi\)
\(728\) 0 0
\(729\) 20001.3i 1.01617i
\(730\) 0 0
\(731\) 29574.8i 1.49640i
\(732\) 0 0
\(733\) 7930.54 + 7930.54i 0.399620 + 0.399620i 0.878099 0.478479i \(-0.158812\pi\)
−0.478479 + 0.878099i \(0.658812\pi\)
\(734\) 0 0
\(735\) 7458.06 6546.81i 0.374278 0.328548i
\(736\) 0 0
\(737\) 17387.4 17387.4i 0.869029 0.869029i
\(738\) 0 0
\(739\) −411.087 −0.0204629 −0.0102314 0.999948i \(-0.503257\pi\)
−0.0102314 + 0.999948i \(0.503257\pi\)
\(740\) 0 0
\(741\) 7486.64 0.371159
\(742\) 0 0
\(743\) 1624.05 1624.05i 0.0801894 0.0801894i −0.665874 0.746064i \(-0.731941\pi\)
0.746064 + 0.665874i \(0.231941\pi\)
\(744\) 0 0
\(745\) 24695.7 + 1606.86i 1.21447 + 0.0790214i
\(746\) 0 0
\(747\) −79.7752 79.7752i −0.00390739 0.00390739i
\(748\) 0 0
\(749\) 20922.3i 1.02067i
\(750\) 0 0
\(751\) 29981.1i 1.45676i −0.685175 0.728378i \(-0.740274\pi\)
0.685175 0.728378i \(-0.259726\pi\)
\(752\) 0 0
\(753\) 9065.00 + 9065.00i 0.438708 + 0.438708i
\(754\) 0 0
\(755\) 34644.9 + 2254.23i 1.67001 + 0.108662i
\(756\) 0 0
\(757\) 5299.37 5299.37i 0.254437 0.254437i −0.568350 0.822787i \(-0.692418\pi\)
0.822787 + 0.568350i \(0.192418\pi\)
\(758\) 0 0
\(759\) 17422.9 0.833215
\(760\) 0 0
\(761\) −3511.34 −0.167261 −0.0836307 0.996497i \(-0.526652\pi\)
−0.0836307 + 0.996497i \(0.526652\pi\)
\(762\) 0 0
\(763\) −14885.4 + 14885.4i −0.706275 + 0.706275i
\(764\) 0 0
\(765\) 368.103 323.127i 0.0173971 0.0152715i
\(766\) 0 0
\(767\) 4335.83 + 4335.83i 0.204117 + 0.204117i
\(768\) 0 0
\(769\) 37995.1i 1.78171i −0.454286 0.890856i \(-0.650105\pi\)
0.454286 0.890856i \(-0.349895\pi\)
\(770\) 0 0
\(771\) 19211.3i 0.897378i
\(772\) 0 0
\(773\) −8421.79 8421.79i −0.391864 0.391864i 0.483487 0.875351i \(-0.339370\pi\)
−0.875351 + 0.483487i \(0.839370\pi\)
\(774\) 0 0
\(775\) 4051.96 31005.2i 0.187807 1.43708i
\(776\) 0 0
\(777\) 12821.9 12821.9i 0.592001 0.592001i
\(778\) 0 0
\(779\) 17925.8 0.824467
\(780\) 0 0
\(781\) −28876.4 −1.32302
\(782\) 0 0
\(783\) −11013.0 + 11013.0i −0.502645 + 0.502645i
\(784\) 0 0
\(785\) 4770.93 + 5434.99i 0.216919 + 0.247112i
\(786\) 0 0
\(787\) −9436.26 9436.26i −0.427403 0.427403i 0.460340 0.887743i \(-0.347728\pi\)
−0.887743 + 0.460340i \(0.847728\pi\)
\(788\) 0 0
\(789\) 11469.0i 0.517499i
\(790\) 0 0
\(791\) 23724.7i 1.06644i
\(792\) 0 0
\(793\) −9397.45 9397.45i −0.420824 0.420824i
\(794\) 0 0
\(795\) 1659.79 25509.1i 0.0740461 1.13800i
\(796\) 0 0
\(797\) −18825.0 + 18825.0i −0.836658 + 0.836658i −0.988417 0.151760i \(-0.951506\pi\)
0.151760 + 0.988417i \(0.451506\pi\)
\(798\) 0 0
\(799\) −35437.8 −1.56909
\(800\) 0 0
\(801\) −567.616 −0.0250383
\(802\) 0 0
\(803\) 662.933 662.933i 0.0291338 0.0291338i
\(804\) 0 0
\(805\) 1104.02 16967.5i 0.0483374 0.742889i
\(806\) 0 0
\(807\) −21774.3 21774.3i −0.949802 0.949802i
\(808\) 0 0
\(809\) 8845.58i 0.384418i −0.981354 0.192209i \(-0.938435\pi\)
0.981354 0.192209i \(-0.0615651\pi\)
\(810\) 0 0
\(811\) 26366.4i 1.14161i −0.821084 0.570807i \(-0.806631\pi\)
0.821084 0.570807i \(-0.193369\pi\)
\(812\) 0 0
\(813\) 14148.8 + 14148.8i 0.610358 + 0.610358i
\(814\) 0 0
\(815\) 22489.4 + 25619.7i 0.966588 + 1.10113i
\(816\) 0 0
\(817\) 9995.84 9995.84i 0.428042 0.428042i
\(818\) 0 0
\(819\) −185.124 −0.00789834
\(820\) 0 0
\(821\) −23708.8 −1.00785 −0.503925 0.863748i \(-0.668111\pi\)
−0.503925 + 0.863748i \(0.668111\pi\)
\(822\) 0 0
\(823\) 5488.36 5488.36i 0.232457 0.232457i −0.581260 0.813718i \(-0.697440\pi\)
0.813718 + 0.581260i \(0.197440\pi\)
\(824\) 0 0
\(825\) 11404.8 + 14833.9i 0.481291 + 0.625998i
\(826\) 0 0
\(827\) −17844.4 17844.4i −0.750317 0.750317i 0.224221 0.974538i \(-0.428016\pi\)
−0.974538 + 0.224221i \(0.928016\pi\)
\(828\) 0 0
\(829\) 21290.2i 0.891965i −0.895042 0.445983i \(-0.852854\pi\)
0.895042 0.445983i \(-0.147146\pi\)
\(830\) 0 0
\(831\) 993.360i 0.0414672i
\(832\) 0 0
\(833\) 11810.1 + 11810.1i 0.491233 + 0.491233i
\(834\) 0 0
\(835\) −18235.4 + 16007.4i −0.755765 + 0.663423i
\(836\) 0 0
\(837\) −25019.3 + 25019.3i −1.03321 + 1.03321i
\(838\) 0 0
\(839\) 18663.5 0.767982 0.383991 0.923337i \(-0.374549\pi\)
0.383991 + 0.923337i \(0.374549\pi\)
\(840\) 0 0
\(841\) 12264.6 0.502873
\(842\) 0 0
\(843\) −13162.5 + 13162.5i −0.537769 + 0.537769i
\(844\) 0 0
\(845\) 13543.2 + 881.213i 0.551362 + 0.0358753i
\(846\) 0 0
\(847\) 4499.33 + 4499.33i 0.182525 + 0.182525i
\(848\) 0 0
\(849\) 25052.0i 1.01270i
\(850\) 0 0
\(851\) 31348.9i 1.26278i
\(852\) 0 0
\(853\) −29213.1 29213.1i −1.17261 1.17261i −0.981585 0.191028i \(-0.938818\pi\)
−0.191028 0.981585i \(-0.561182\pi\)
\(854\) 0 0
\(855\) −233.625 15.2012i −0.00934480 0.000608035i
\(856\) 0 0
\(857\) −20195.6 + 20195.6i −0.804982 + 0.804982i −0.983870 0.178887i \(-0.942750\pi\)
0.178887 + 0.983870i \(0.442750\pi\)
\(858\) 0 0
\(859\) −18130.9 −0.720163 −0.360081 0.932921i \(-0.617251\pi\)
−0.360081 + 0.932921i \(0.617251\pi\)
\(860\) 0 0
\(861\) 26042.3 1.03080
\(862\) 0 0
\(863\) −20555.9 + 20555.9i −0.810813 + 0.810813i −0.984756 0.173943i \(-0.944349\pi\)
0.173943 + 0.984756i \(0.444349\pi\)
\(864\) 0 0
\(865\) −14083.6 + 12362.8i −0.553593 + 0.485953i
\(866\) 0 0
\(867\) −16347.2 16347.2i −0.640347 0.640347i
\(868\) 0 0
\(869\) 17782.7i 0.694175i
\(870\) 0 0
\(871\) 26538.2i 1.03239i
\(872\) 0 0
\(873\) 121.958 + 121.958i 0.00472811 + 0.00472811i
\(874\) 0 0
\(875\) 15168.8 10166.8i 0.586058 0.392800i
\(876\) 0 0
\(877\) −7869.09 + 7869.09i −0.302988 + 0.302988i −0.842182 0.539194i \(-0.818729\pi\)
0.539194 + 0.842182i \(0.318729\pi\)
\(878\) 0 0
\(879\) −7820.60 −0.300094
\(880\) 0 0
\(881\) −8171.00 −0.312472 −0.156236 0.987720i \(-0.549936\pi\)
−0.156236 + 0.987720i \(0.549936\pi\)
\(882\) 0 0
\(883\) 8770.49 8770.49i 0.334259 0.334259i −0.519943 0.854201i \(-0.674047\pi\)
0.854201 + 0.519943i \(0.174047\pi\)
\(884\) 0 0
\(885\) 7432.08 + 8466.55i 0.282290 + 0.321582i
\(886\) 0 0
\(887\) −17832.7 17832.7i −0.675045 0.675045i 0.283830 0.958875i \(-0.408395\pi\)
−0.958875 + 0.283830i \(0.908395\pi\)
\(888\) 0 0
\(889\) 11727.2i 0.442427i
\(890\) 0 0
\(891\) 20818.6i 0.782771i
\(892\) 0 0
\(893\) 11977.4 + 11977.4i 0.448835 + 0.448835i
\(894\) 0 0
\(895\) 3039.96 46720.7i 0.113536 1.74492i
\(896\) 0 0
\(897\) −13296.1 + 13296.1i −0.494922 + 0.494922i
\(898\) 0 0
\(899\) −27544.3 −1.02186
\(900\) 0 0
\(901\) 43023.0 1.59079
\(902\) 0 0
\(903\) 14521.7 14521.7i 0.535164 0.535164i
\(904\) 0 0
\(905\) 2124.03 32643.8i 0.0780166 1.19903i
\(906\) 0 0
\(907\) −14576.9 14576.9i −0.533647 0.533647i 0.388009 0.921656i \(-0.373163\pi\)
−0.921656 + 0.388009i \(0.873163\pi\)
\(908\) 0 0
\(909\) 358.966i 0.0130981i
\(910\) 0 0
\(911\) 12206.6i 0.443931i −0.975055 0.221966i \(-0.928753\pi\)
0.975055 0.221966i \(-0.0712472\pi\)
\(912\) 0 0
\(913\) 5129.04 + 5129.04i 0.185922 + 0.185922i
\(914\) 0 0
\(915\) −16108.2 18350.3i −0.581990 0.662997i
\(916\) 0 0
\(917\) 13295.5 13295.5i 0.478797 0.478797i
\(918\) 0 0
\(919\) −23873.7 −0.856933 −0.428466 0.903558i \(-0.640946\pi\)
−0.428466 + 0.903558i \(0.640946\pi\)
\(920\) 0 0
\(921\) 18168.6 0.650030
\(922\) 0 0
\(923\) 22036.8 22036.8i 0.785861 0.785861i
\(924\) 0 0
\(925\) −26690.5 + 20520.6i −0.948734 + 0.729421i
\(926\) 0 0
\(927\) −6.18564 6.18564i −0.000219162 0.000219162i
\(928\) 0 0
\(929\) 35418.8i 1.25087i 0.780278 + 0.625433i \(0.215078\pi\)
−0.780278 + 0.625433i \(0.784922\pi\)
\(930\) 0 0
\(931\) 7983.29i 0.281033i
\(932\) 0 0
\(933\) 18198.0 + 18198.0i 0.638559 + 0.638559i
\(934\) 0 0
\(935\) −23666.7 + 20775.0i −0.827789 + 0.726647i
\(936\) 0 0
\(937\) −12118.3 + 12118.3i −0.422504 + 0.422504i −0.886065 0.463561i \(-0.846572\pi\)
0.463561 + 0.886065i \(0.346572\pi\)
\(938\) 0 0
\(939\) −5697.36 −0.198005
\(940\) 0 0
\(941\) 18810.5 0.651652 0.325826 0.945430i \(-0.394358\pi\)
0.325826 + 0.945430i \(0.394358\pi\)
\(942\) 0 0
\(943\) −31835.9 + 31835.9i −1.09938 + 1.09938i
\(944\) 0 0
\(945\) −20619.7 1341.65i −0.709796 0.0461841i
\(946\) 0 0
\(947\) 10061.3 + 10061.3i 0.345248 + 0.345248i 0.858336 0.513088i \(-0.171499\pi\)
−0.513088 + 0.858336i \(0.671499\pi\)
\(948\) 0 0
\(949\) 1011.83i 0.0346104i
\(950\) 0 0
\(951\) 8317.16i 0.283599i
\(952\) 0 0
\(953\) −4617.23 4617.23i −0.156943 0.156943i 0.624267 0.781211i \(-0.285398\pi\)
−0.781211 + 0.624267i \(0.785398\pi\)
\(954\) 0 0
\(955\) 8467.91 + 550.979i 0.286927 + 0.0186694i
\(956\) 0 0
\(957\) 11654.9 11654.9i 0.393679 0.393679i
\(958\) 0 0
\(959\) −14388.4 −0.484489
\(960\) 0 0
\(961\) −32784.3 −1.10048
\(962\) 0 0
\(963\) 511.621 511.621i 0.0171202 0.0171202i
\(964\) 0 0
\(965\) 6965.58 6114.50i 0.232363 0.203972i
\(966\) 0 0
\(967\) −19358.2 19358.2i −0.643761 0.643761i 0.307717 0.951478i \(-0.400435\pi\)
−0.951478 + 0.307717i \(0.900435\pi\)
\(968\) 0 0
\(969\) 23149.9i 0.767475i
\(970\) 0 0
\(971\) 48233.1i 1.59410i −0.603912 0.797051i \(-0.706392\pi\)
0.603912 0.797051i \(-0.293608\pi\)
\(972\) 0 0
\(973\) 8826.18 + 8826.18i 0.290806 + 0.290806i
\(974\) 0 0
\(975\) −20023.8 2616.85i −0.657719 0.0859551i
\(976\) 0 0
\(977\) −7570.57 + 7570.57i −0.247906 + 0.247906i −0.820111 0.572205i \(-0.806088\pi\)
0.572205 + 0.820111i \(0.306088\pi\)
\(978\) 0 0
\(979\) 36494.1 1.19137
\(980\) 0 0
\(981\) −727.997 −0.0236933
\(982\) 0 0
\(983\) 35285.1 35285.1i 1.14488 1.14488i 0.157340 0.987545i \(-0.449708\pi\)
0.987545 0.157340i \(-0.0502918\pi\)
\(984\) 0 0
\(985\) −315.279 359.163i −0.0101986 0.0116181i
\(986\) 0 0
\(987\) 17400.6 + 17400.6i 0.561161 + 0.561161i
\(988\) 0 0
\(989\) 35504.8i 1.14154i
\(990\) 0 0
\(991\) 51953.1i 1.66533i 0.553774 + 0.832667i \(0.313187\pi\)
−0.553774 + 0.832667i \(0.686813\pi\)
\(992\) 0 0
\(993\) −33314.3 33314.3i −1.06465 1.06465i
\(994\) 0 0
\(995\) 1082.48 16636.5i 0.0344895 0.530063i
\(996\) 0 0
\(997\) 20466.1 20466.1i 0.650119 0.650119i −0.302903 0.953021i \(-0.597956\pi\)
0.953021 + 0.302903i \(0.0979557\pi\)
\(998\) 0 0
\(999\) 38096.6 1.20653
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.n.h.63.3 8
4.3 odd 2 320.4.n.g.63.2 8
5.2 odd 4 320.4.n.g.127.2 8
8.3 odd 2 160.4.n.e.63.3 yes 8
8.5 even 2 160.4.n.d.63.2 8
20.7 even 4 inner 320.4.n.h.127.3 8
40.27 even 4 160.4.n.d.127.2 yes 8
40.37 odd 4 160.4.n.e.127.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.4.n.d.63.2 8 8.5 even 2
160.4.n.d.127.2 yes 8 40.27 even 4
160.4.n.e.63.3 yes 8 8.3 odd 2
160.4.n.e.127.3 yes 8 40.37 odd 4
320.4.n.g.63.2 8 4.3 odd 2
320.4.n.g.127.2 8 5.2 odd 4
320.4.n.h.63.3 8 1.1 even 1 trivial
320.4.n.h.127.3 8 20.7 even 4 inner