L(s) = 1 | + 12·11-s + 14·19-s − 14·31-s + 12·41-s − 2·49-s + 24·59-s − 14·61-s + 12·71-s + 2·79-s + 12·89-s + 24·101-s − 10·109-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | + 3.61·11-s + 3.21·19-s − 2.51·31-s + 1.87·41-s − 2/7·49-s + 3.12·59-s − 1.79·61-s + 1.42·71-s + 0.225·79-s + 1.27·89-s + 2.38·101-s − 0.957·109-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.627011124\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.627011124\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.125740913615331245706947465305, −8.982264768566373308306878050506, −8.293081617996365040222772012801, −7.77949216299918700198861894775, −7.41106351860769549429966298850, −7.13265523286790592901950410007, −6.81915472312370480692841830321, −6.41442641159231362790223570674, −5.86698871097936110969219827407, −5.70823624518412527148083558985, −5.15337934341860553954170718559, −4.73324949714790720570673304944, −4.05437890013519934300945849229, −3.81214660276834380752705002785, −3.48234902022798454151523702694, −3.16790386821563528800210065635, −2.23837567287528517544905511816, −1.71699487149532518148958811031, −1.03135822643077417071071172978, −0.949386231486950069077761217962,
0.949386231486950069077761217962, 1.03135822643077417071071172978, 1.71699487149532518148958811031, 2.23837567287528517544905511816, 3.16790386821563528800210065635, 3.48234902022798454151523702694, 3.81214660276834380752705002785, 4.05437890013519934300945849229, 4.73324949714790720570673304944, 5.15337934341860553954170718559, 5.70823624518412527148083558985, 5.86698871097936110969219827407, 6.41442641159231362790223570674, 6.81915472312370480692841830321, 7.13265523286790592901950410007, 7.41106351860769549429966298850, 7.77949216299918700198861894775, 8.293081617996365040222772012801, 8.982264768566373308306878050506, 9.125740913615331245706947465305