Properties

Label 16-2340e8-1.1-c1e8-0-1
Degree $16$
Conductor $8.989\times 10^{26}$
Sign $1$
Analytic cond. $1.48574\times 10^{10}$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·13-s − 4·25-s − 32·43-s + 38·49-s − 4·61-s − 4·79-s − 8·103-s + 46·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 24·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  + 1.10·13-s − 4/5·25-s − 4.87·43-s + 38/7·49-s − 0.512·61-s − 0.450·79-s − 0.788·103-s + 4.18·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 13^{8}\)
Sign: $1$
Analytic conductor: \(1.48574\times 10^{10}\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{16} \cdot 5^{8} \cdot 13^{8} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.8097590492\)
\(L(\frac12)\) \(\approx\) \(0.8097590492\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( ( 1 + T^{2} )^{4} \)
13 \( ( 1 - 2 T - 6 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
good7 \( ( 1 - 19 T^{2} + 180 T^{4} - 19 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
11 \( ( 1 - 23 T^{2} + 300 T^{4} - 23 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 23 T^{2} + 636 T^{4} + 23 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 28 T^{2} + 390 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 + p T^{2} + 192 T^{4} + p^{3} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 80 T^{2} + 3150 T^{4} + 80 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 76 T^{2} + 2838 T^{4} - 76 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 103 T^{2} + 5316 T^{4} - 103 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 143 T^{2} + 8400 T^{4} - 143 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 + 4 T + p T^{2} )^{8} \)
47 \( ( 1 - 104 T^{2} + 5934 T^{4} - 104 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 + 119 T^{2} + 7764 T^{4} + 119 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 152 T^{2} + 11550 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 + T + 48 T^{2} + p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 - 208 T^{2} + 19662 T^{4} - 208 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 - 95 T^{2} + 6324 T^{4} - 95 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 112 T^{2} + 12606 T^{4} - 112 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + T + 150 T^{2} + p T^{3} + p^{2} T^{4} )^{4} \)
83 \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{4} \)
89 \( ( 1 - 335 T^{2} + 43824 T^{4} - 335 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 319 T^{2} + 43260 T^{4} - 319 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.76270885295704989141315879500, −3.63919204604444100624629792198, −3.63113172476790926470759695099, −3.32756748076090941448603042423, −3.21684435202438720353012534680, −3.13347438714931250870554881824, −3.11752802338585207760200721471, −3.11340693008362479910895315528, −2.76242313108703904084057453886, −2.45254061367822492155645929075, −2.42406808406277003553926994635, −2.41419407691118934172803139392, −2.39666905727654047020594597739, −2.03521641045187954345658986660, −1.94607404973274462093432784408, −1.88785475018526271783213974427, −1.60989701956771739664543260150, −1.49217457678181642095760308247, −1.42496665889788083395878068545, −1.20459953067396699200292574637, −1.05601067177133197665713024846, −0.68563135126300476563900286382, −0.61761876443663113048670777010, −0.53803223242451943068828879157, −0.06969665510498629719788778905, 0.06969665510498629719788778905, 0.53803223242451943068828879157, 0.61761876443663113048670777010, 0.68563135126300476563900286382, 1.05601067177133197665713024846, 1.20459953067396699200292574637, 1.42496665889788083395878068545, 1.49217457678181642095760308247, 1.60989701956771739664543260150, 1.88785475018526271783213974427, 1.94607404973274462093432784408, 2.03521641045187954345658986660, 2.39666905727654047020594597739, 2.41419407691118934172803139392, 2.42406808406277003553926994635, 2.45254061367822492155645929075, 2.76242313108703904084057453886, 3.11340693008362479910895315528, 3.11752802338585207760200721471, 3.13347438714931250870554881824, 3.21684435202438720353012534680, 3.32756748076090941448603042423, 3.63113172476790926470759695099, 3.63919204604444100624629792198, 3.76270885295704989141315879500

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.