Properties

Label 20-234e10-1.1-c7e10-0-1
Degree $20$
Conductor $4.922\times 10^{23}$
Sign $1$
Analytic cond. $4.35572\times 10^{18}$
Root an. cond. $8.54974$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 320·4-s + 3.43e3·13-s + 6.14e4·16-s + 6.91e3·17-s − 9.41e4·23-s + 2.25e5·25-s + 1.31e5·29-s + 2.74e6·43-s + 2.57e6·49-s − 1.09e6·52-s + 3.60e6·53-s + 1.17e7·61-s − 9.17e6·64-s − 2.21e6·68-s − 2.84e7·79-s + 3.01e7·92-s − 7.20e7·100-s + 6.68e7·101-s + 3.96e7·103-s − 3.23e7·107-s − 1.26e7·113-s − 4.20e7·116-s + 1.20e8·121-s + 127-s + 131-s + 137-s + 139-s + ⋯
L(s)  = 1  − 5/2·4-s + 0.433·13-s + 15/4·16-s + 0.341·17-s − 1.61·23-s + 2.88·25-s + 0.999·29-s + 5.25·43-s + 3.12·49-s − 1.08·52-s + 3.32·53-s + 6.61·61-s − 4.37·64-s − 0.853·68-s − 6.49·79-s + 4.03·92-s − 7.20·100-s + 6.45·101-s + 3.57·103-s − 2.55·107-s − 0.823·113-s − 2.49·116-s + 6.19·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 3^{20} \cdot 13^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 3^{20} \cdot 13^{10}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{10} \cdot 3^{20} \cdot 13^{10}\)
Sign: $1$
Analytic conductor: \(4.35572\times 10^{18}\)
Root analytic conductor: \(8.54974\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{10} \cdot 3^{20} \cdot 13^{10} ,\ ( \ : [7/2]^{10} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(20.60625362\)
\(L(\frac12)\) \(\approx\) \(20.60625362\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + p^{6} T^{2} )^{5} \)
3 \( 1 \)
13 \( 1 - 264 p T - 22993699 T^{2} - 4924787536 p T^{3} - 968688324290 p^{3} T^{4} + 6063923562544 p^{6} T^{5} - 968688324290 p^{10} T^{6} - 4924787536 p^{15} T^{7} - 22993699 p^{21} T^{8} - 264 p^{29} T^{9} + p^{35} T^{10} \)
good5 \( 1 - 225231 T^{2} + 32288663936 T^{4} - 152778921987493 p^{2} T^{6} + 602856476164317307 p^{4} T^{8} - \)\(20\!\cdots\!44\)\( p^{6} T^{10} + 602856476164317307 p^{18} T^{12} - 152778921987493 p^{30} T^{14} + 32288663936 p^{42} T^{16} - 225231 p^{56} T^{18} + p^{70} T^{20} \)
7 \( 1 - 2575763 T^{2} + 671623904160 p T^{4} - 5365720625267088049 T^{6} + \)\(53\!\cdots\!99\)\( T^{8} - \)\(43\!\cdots\!96\)\( T^{10} + \)\(53\!\cdots\!99\)\( p^{14} T^{12} - 5365720625267088049 p^{28} T^{14} + 671623904160 p^{43} T^{16} - 2575763 p^{56} T^{18} + p^{70} T^{20} \)
11 \( 1 - 120702854 T^{2} + 6794589484941669 T^{4} - \)\(24\!\cdots\!20\)\( T^{6} + \)\(61\!\cdots\!74\)\( T^{8} - \)\(13\!\cdots\!40\)\( T^{10} + \)\(61\!\cdots\!74\)\( p^{14} T^{12} - \)\(24\!\cdots\!20\)\( p^{28} T^{14} + 6794589484941669 p^{42} T^{16} - 120702854 p^{56} T^{18} + p^{70} T^{20} \)
17 \( ( 1 - 3459 T + 859860888 T^{2} - 7710109622385 T^{3} + 576376045055414203 T^{4} - \)\(15\!\cdots\!16\)\( p T^{5} + 576376045055414203 p^{7} T^{6} - 7710109622385 p^{14} T^{7} + 859860888 p^{21} T^{8} - 3459 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
19 \( 1 - 6136392106 T^{2} + 17676334383504800229 T^{4} - \)\(32\!\cdots\!00\)\( T^{6} + \)\(41\!\cdots\!86\)\( T^{8} - \)\(41\!\cdots\!20\)\( T^{10} + \)\(41\!\cdots\!86\)\( p^{14} T^{12} - \)\(32\!\cdots\!00\)\( p^{28} T^{14} + 17676334383504800229 p^{42} T^{16} - 6136392106 p^{56} T^{18} + p^{70} T^{20} \)
23 \( ( 1 + 47082 T + 6606601023 T^{2} + 217461172664112 T^{3} + 31436770794169134934 T^{4} + \)\(12\!\cdots\!24\)\( T^{5} + 31436770794169134934 p^{7} T^{6} + 217461172664112 p^{14} T^{7} + 6606601023 p^{21} T^{8} + 47082 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
29 \( ( 1 - 65652 T + 26235231693 T^{2} - 1129309776900624 T^{3} + \)\(74\!\cdots\!82\)\( T^{4} - \)\(44\!\cdots\!88\)\( T^{5} + \)\(74\!\cdots\!82\)\( p^{7} T^{6} - 1129309776900624 p^{14} T^{7} + 26235231693 p^{21} T^{8} - 65652 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
31 \( 1 - 185089377182 T^{2} + \)\(17\!\cdots\!25\)\( T^{4} - \)\(10\!\cdots\!88\)\( T^{6} + \)\(44\!\cdots\!70\)\( T^{8} - \)\(14\!\cdots\!72\)\( T^{10} + \)\(44\!\cdots\!70\)\( p^{14} T^{12} - \)\(10\!\cdots\!88\)\( p^{28} T^{14} + \)\(17\!\cdots\!25\)\( p^{42} T^{16} - 185089377182 p^{56} T^{18} + p^{70} T^{20} \)
37 \( 1 - 343402102127 T^{2} + \)\(55\!\cdots\!88\)\( T^{4} - \)\(57\!\cdots\!09\)\( T^{6} + \)\(45\!\cdots\!87\)\( T^{8} - \)\(35\!\cdots\!48\)\( T^{10} + \)\(45\!\cdots\!87\)\( p^{14} T^{12} - \)\(57\!\cdots\!09\)\( p^{28} T^{14} + \)\(55\!\cdots\!88\)\( p^{42} T^{16} - 343402102127 p^{56} T^{18} + p^{70} T^{20} \)
41 \( 1 + 112502588934 T^{2} + \)\(77\!\cdots\!45\)\( T^{4} + \)\(13\!\cdots\!16\)\( T^{6} + \)\(47\!\cdots\!78\)\( T^{8} + \)\(60\!\cdots\!92\)\( T^{10} + \)\(47\!\cdots\!78\)\( p^{14} T^{12} + \)\(13\!\cdots\!16\)\( p^{28} T^{14} + \)\(77\!\cdots\!45\)\( p^{42} T^{16} + 112502588934 p^{56} T^{18} + p^{70} T^{20} \)
43 \( ( 1 - 1370387 T + 1564308442782 T^{2} - 1225930881362215225 T^{3} + \)\(83\!\cdots\!73\)\( T^{4} - \)\(45\!\cdots\!76\)\( T^{5} + \)\(83\!\cdots\!73\)\( p^{7} T^{6} - 1225930881362215225 p^{14} T^{7} + 1564308442782 p^{21} T^{8} - 1370387 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
47 \( 1 - 3093842497907 T^{2} + \)\(44\!\cdots\!04\)\( T^{4} - \)\(39\!\cdots\!05\)\( T^{6} + \)\(25\!\cdots\!19\)\( T^{8} - \)\(13\!\cdots\!36\)\( T^{10} + \)\(25\!\cdots\!19\)\( p^{14} T^{12} - \)\(39\!\cdots\!05\)\( p^{28} T^{14} + \)\(44\!\cdots\!04\)\( p^{42} T^{16} - 3093842497907 p^{56} T^{18} + p^{70} T^{20} \)
53 \( ( 1 - 1802958 T + 5639334494953 T^{2} - 7115810756500449768 T^{3} + \)\(12\!\cdots\!62\)\( T^{4} - \)\(11\!\cdots\!00\)\( T^{5} + \)\(12\!\cdots\!62\)\( p^{7} T^{6} - 7115810756500449768 p^{14} T^{7} + 5639334494953 p^{21} T^{8} - 1802958 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
59 \( 1 - 13883635821978 T^{2} + \)\(10\!\cdots\!93\)\( T^{4} - \)\(49\!\cdots\!40\)\( T^{6} + \)\(17\!\cdots\!42\)\( T^{8} - \)\(50\!\cdots\!76\)\( T^{10} + \)\(17\!\cdots\!42\)\( p^{14} T^{12} - \)\(49\!\cdots\!40\)\( p^{28} T^{14} + \)\(10\!\cdots\!93\)\( p^{42} T^{16} - 13883635821978 p^{56} T^{18} + p^{70} T^{20} \)
61 \( ( 1 - 5863828 T + 26869621220877 T^{2} - 80701347370664552240 T^{3} + \)\(20\!\cdots\!46\)\( T^{4} - \)\(39\!\cdots\!52\)\( T^{5} + \)\(20\!\cdots\!46\)\( p^{7} T^{6} - 80701347370664552240 p^{14} T^{7} + 26869621220877 p^{21} T^{8} - 5863828 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
67 \( 1 - 27541658882918 T^{2} + \)\(40\!\cdots\!49\)\( T^{4} - \)\(42\!\cdots\!60\)\( T^{6} + \)\(34\!\cdots\!94\)\( T^{8} - \)\(23\!\cdots\!64\)\( T^{10} + \)\(34\!\cdots\!94\)\( p^{14} T^{12} - \)\(42\!\cdots\!60\)\( p^{28} T^{14} + \)\(40\!\cdots\!49\)\( p^{42} T^{16} - 27541658882918 p^{56} T^{18} + p^{70} T^{20} \)
71 \( 1 - 33623256709835 T^{2} + \)\(58\!\cdots\!20\)\( T^{4} - \)\(61\!\cdots\!45\)\( T^{6} + \)\(46\!\cdots\!35\)\( T^{8} - \)\(33\!\cdots\!52\)\( T^{10} + \)\(46\!\cdots\!35\)\( p^{14} T^{12} - \)\(61\!\cdots\!45\)\( p^{28} T^{14} + \)\(58\!\cdots\!20\)\( p^{42} T^{16} - 33623256709835 p^{56} T^{18} + p^{70} T^{20} \)
73 \( 1 - 95909133451406 T^{2} + \)\(42\!\cdots\!41\)\( T^{4} - \)\(11\!\cdots\!32\)\( T^{6} + \)\(21\!\cdots\!78\)\( T^{8} - \)\(27\!\cdots\!84\)\( T^{10} + \)\(21\!\cdots\!78\)\( p^{14} T^{12} - \)\(11\!\cdots\!32\)\( p^{28} T^{14} + \)\(42\!\cdots\!41\)\( p^{42} T^{16} - 95909133451406 p^{56} T^{18} + p^{70} T^{20} \)
79 \( ( 1 + 14224614 T + 123964613166215 T^{2} + \)\(65\!\cdots\!56\)\( T^{3} + \)\(28\!\cdots\!14\)\( T^{4} + \)\(10\!\cdots\!80\)\( T^{5} + \)\(28\!\cdots\!14\)\( p^{7} T^{6} + \)\(65\!\cdots\!56\)\( p^{14} T^{7} + 123964613166215 p^{21} T^{8} + 14224614 p^{28} T^{9} + p^{35} T^{10} )^{2} \)
83 \( 1 - 212120486293674 T^{2} + \)\(21\!\cdots\!45\)\( T^{4} - \)\(13\!\cdots\!96\)\( T^{6} + \)\(57\!\cdots\!74\)\( T^{8} - \)\(18\!\cdots\!20\)\( T^{10} + \)\(57\!\cdots\!74\)\( p^{14} T^{12} - \)\(13\!\cdots\!96\)\( p^{28} T^{14} + \)\(21\!\cdots\!45\)\( p^{42} T^{16} - 212120486293674 p^{56} T^{18} + p^{70} T^{20} \)
89 \( 1 - 298599996412142 T^{2} + \)\(41\!\cdots\!89\)\( T^{4} - \)\(36\!\cdots\!56\)\( T^{6} + \)\(22\!\cdots\!06\)\( T^{8} - \)\(11\!\cdots\!56\)\( T^{10} + \)\(22\!\cdots\!06\)\( p^{14} T^{12} - \)\(36\!\cdots\!56\)\( p^{28} T^{14} + \)\(41\!\cdots\!89\)\( p^{42} T^{16} - 298599996412142 p^{56} T^{18} + p^{70} T^{20} \)
97 \( 1 - 508032728860570 T^{2} + \)\(12\!\cdots\!41\)\( T^{4} - \)\(21\!\cdots\!20\)\( T^{6} + \)\(26\!\cdots\!86\)\( T^{8} - \)\(24\!\cdots\!40\)\( T^{10} + \)\(26\!\cdots\!86\)\( p^{14} T^{12} - \)\(21\!\cdots\!20\)\( p^{28} T^{14} + \)\(12\!\cdots\!41\)\( p^{42} T^{16} - 508032728860570 p^{56} T^{18} + p^{70} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.29414867743035764599868339449, −3.23801599308529551063895885985, −3.19533100369994420008028669067, −3.08587900193629026482591796945, −3.02481915747946150820317717286, −2.79334269628202235869531982837, −2.50845744111743333968230146962, −2.49456389513205205612119693509, −2.29977360204920683462241585336, −2.15992412938200714332180062184, −2.07963697575632900463823860263, −2.07171134505883015576027035832, −1.89632325012941739919426921886, −1.67751990599398960519057929798, −1.40528054018674921120832457116, −1.15276632558209145796599753865, −0.909868413131828452358452574068, −0.901690103486054421450845751483, −0.871277228110544982994515668925, −0.793751423629071173132837265747, −0.77485044444179829507354481768, −0.60747449243357315230173779986, −0.57037342486153059289766469848, −0.27702381932856359080162017263, −0.16486403679890947566617280619, 0.16486403679890947566617280619, 0.27702381932856359080162017263, 0.57037342486153059289766469848, 0.60747449243357315230173779986, 0.77485044444179829507354481768, 0.793751423629071173132837265747, 0.871277228110544982994515668925, 0.901690103486054421450845751483, 0.909868413131828452358452574068, 1.15276632558209145796599753865, 1.40528054018674921120832457116, 1.67751990599398960519057929798, 1.89632325012941739919426921886, 2.07171134505883015576027035832, 2.07963697575632900463823860263, 2.15992412938200714332180062184, 2.29977360204920683462241585336, 2.49456389513205205612119693509, 2.50845744111743333968230146962, 2.79334269628202235869531982837, 3.02481915747946150820317717286, 3.08587900193629026482591796945, 3.19533100369994420008028669067, 3.23801599308529551063895885985, 3.29414867743035764599868339449

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.