Properties

Label 234.8.b.c.181.9
Level $234$
Weight $8$
Character 234.181
Analytic conductor $73.098$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,8,Mod(181,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.181"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 234.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.0980959633\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 17770x^{8} + 98320641x^{6} + 176057788072x^{4} + 109845194658832x^{2} + 14762086704451584 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{19}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.9
Root \(36.7123i\) of defining polynomial
Character \(\chi\) \(=\) 234.181
Dual form 234.8.b.c.181.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{2} -64.0000 q^{4} +319.050i q^{5} +1008.64i q^{7} -512.000i q^{8} -2552.40 q^{10} -7261.68i q^{11} +(7921.28 + 43.0248i) q^{13} -8069.13 q^{14} +4096.00 q^{16} +25483.8 q^{17} +8741.60i q^{19} -20419.2i q^{20} +58093.4 q^{22} +83505.4 q^{23} -23668.0 q^{25} +(-344.198 + 63370.2i) q^{26} -64553.0i q^{28} +197882. q^{29} -138208. i q^{31} +32768.0i q^{32} +203870. i q^{34} -321807. q^{35} -61869.9i q^{37} -69932.8 q^{38} +163354. q^{40} -784542. i q^{41} -440828. q^{43} +464747. i q^{44} +668043. i q^{46} -180772. i q^{47} -193813. q^{49} -189344. i q^{50} +(-506962. - 2753.59i) q^{52} +594626. q^{53} +2.31684e6 q^{55} +516424. q^{56} +1.58306e6i q^{58} -43491.6i q^{59} +607137. q^{61} +1.10566e6 q^{62} -262144. q^{64} +(-13727.1 + 2.52729e6i) q^{65} +3.33027e6i q^{67} -1.63096e6 q^{68} -2.57446e6i q^{70} +3.42469e6i q^{71} -2.18369e6i q^{73} +494959. q^{74} -559463. i q^{76} +7.32442e6 q^{77} -4.16881e6 q^{79} +1.30683e6i q^{80} +6.27634e6 q^{82} -415486. i q^{83} +8.13060e6i q^{85} -3.52662e6i q^{86} -3.71798e6 q^{88} +2.04571e6i q^{89} +(-43396.5 + 7.98972e6i) q^{91} -5.34435e6 q^{92} +1.44618e6 q^{94} -2.78901e6 q^{95} +1.09309e6i q^{97} -1.55050e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 640 q^{4} - 1136 q^{10} + 3432 q^{13} - 3792 q^{14} + 40960 q^{16} + 6918 q^{17} + 17280 q^{22} - 94164 q^{23} - 330788 q^{25} - 118896 q^{26} + 131304 q^{29} - 873450 q^{35} - 602976 q^{38} + 72704 q^{40}+ \cdots - 16547484 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.00000i 0.707107i
\(3\) 0 0
\(4\) −64.0000 −0.500000
\(5\) 319.050i 1.14147i 0.821135 + 0.570734i \(0.193341\pi\)
−0.821135 + 0.570734i \(0.806659\pi\)
\(6\) 0 0
\(7\) 1008.64i 1.11146i 0.831363 + 0.555729i \(0.187561\pi\)
−0.831363 + 0.555729i \(0.812439\pi\)
\(8\) 512.000i 0.353553i
\(9\) 0 0
\(10\) −2552.40 −0.807140
\(11\) 7261.68i 1.64499i −0.568775 0.822493i \(-0.692582\pi\)
0.568775 0.822493i \(-0.307418\pi\)
\(12\) 0 0
\(13\) 7921.28 + 43.0248i 0.999985 + 0.00543146i
\(14\) −8069.13 −0.785920
\(15\) 0 0
\(16\) 4096.00 0.250000
\(17\) 25483.8 1.25803 0.629017 0.777392i \(-0.283458\pi\)
0.629017 + 0.777392i \(0.283458\pi\)
\(18\) 0 0
\(19\) 8741.60i 0.292384i 0.989256 + 0.146192i \(0.0467017\pi\)
−0.989256 + 0.146192i \(0.953298\pi\)
\(20\) 20419.2i 0.570734i
\(21\) 0 0
\(22\) 58093.4 1.16318
\(23\) 83505.4 1.43109 0.715546 0.698566i \(-0.246178\pi\)
0.715546 + 0.698566i \(0.246178\pi\)
\(24\) 0 0
\(25\) −23668.0 −0.302950
\(26\) −344.198 + 63370.2i −0.00384062 + 0.707096i
\(27\) 0 0
\(28\) 64553.0i 0.555729i
\(29\) 197882. 1.50666 0.753328 0.657644i \(-0.228447\pi\)
0.753328 + 0.657644i \(0.228447\pi\)
\(30\) 0 0
\(31\) 138208.i 0.833234i −0.909082 0.416617i \(-0.863216\pi\)
0.909082 0.416617i \(-0.136784\pi\)
\(32\) 32768.0i 0.176777i
\(33\) 0 0
\(34\) 203870.i 0.889564i
\(35\) −321807. −1.26870
\(36\) 0 0
\(37\) 61869.9i 0.200805i −0.994947 0.100402i \(-0.967987\pi\)
0.994947 0.100402i \(-0.0320130\pi\)
\(38\) −69932.8 −0.206747
\(39\) 0 0
\(40\) 163354. 0.403570
\(41\) 784542.i 1.77776i −0.458141 0.888880i \(-0.651485\pi\)
0.458141 0.888880i \(-0.348515\pi\)
\(42\) 0 0
\(43\) −440828. −0.845531 −0.422765 0.906239i \(-0.638941\pi\)
−0.422765 + 0.906239i \(0.638941\pi\)
\(44\) 464747.i 0.822493i
\(45\) 0 0
\(46\) 668043.i 1.01193i
\(47\) 180772.i 0.253974i −0.991904 0.126987i \(-0.959469\pi\)
0.991904 0.126987i \(-0.0405306\pi\)
\(48\) 0 0
\(49\) −193813. −0.235340
\(50\) 189344.i 0.214218i
\(51\) 0 0
\(52\) −506962. 2753.59i −0.499993 0.00271573i
\(53\) 594626. 0.548628 0.274314 0.961640i \(-0.411549\pi\)
0.274314 + 0.961640i \(0.411549\pi\)
\(54\) 0 0
\(55\) 2.31684e6 1.87770
\(56\) 516424. 0.392960
\(57\) 0 0
\(58\) 1.58306e6i 1.06537i
\(59\) 43491.6i 0.0275691i −0.999905 0.0137846i \(-0.995612\pi\)
0.999905 0.0137846i \(-0.00438790\pi\)
\(60\) 0 0
\(61\) 607137. 0.342478 0.171239 0.985230i \(-0.445223\pi\)
0.171239 + 0.985230i \(0.445223\pi\)
\(62\) 1.10566e6 0.589185
\(63\) 0 0
\(64\) −262144. −0.125000
\(65\) −13727.1 + 2.52729e6i −0.00619984 + 1.14145i
\(66\) 0 0
\(67\) 3.33027e6i 1.35275i 0.736557 + 0.676375i \(0.236450\pi\)
−0.736557 + 0.676375i \(0.763550\pi\)
\(68\) −1.63096e6 −0.629017
\(69\) 0 0
\(70\) 2.57446e6i 0.897103i
\(71\) 3.42469e6i 1.13558i 0.823174 + 0.567789i \(0.192201\pi\)
−0.823174 + 0.567789i \(0.807799\pi\)
\(72\) 0 0
\(73\) 2.18369e6i 0.656993i −0.944505 0.328497i \(-0.893458\pi\)
0.944505 0.328497i \(-0.106542\pi\)
\(74\) 494959. 0.141990
\(75\) 0 0
\(76\) 559463.i 0.146192i
\(77\) 7.32442e6 1.82834
\(78\) 0 0
\(79\) −4.16881e6 −0.951300 −0.475650 0.879635i \(-0.657787\pi\)
−0.475650 + 0.879635i \(0.657787\pi\)
\(80\) 1.30683e6i 0.285367i
\(81\) 0 0
\(82\) 6.27634e6 1.25707
\(83\) 415486.i 0.0797596i −0.999204 0.0398798i \(-0.987302\pi\)
0.999204 0.0398798i \(-0.0126975\pi\)
\(84\) 0 0
\(85\) 8.13060e6i 1.43601i
\(86\) 3.52662e6i 0.597881i
\(87\) 0 0
\(88\) −3.71798e6 −0.581591
\(89\) 2.04571e6i 0.307595i 0.988102 + 0.153798i \(0.0491504\pi\)
−0.988102 + 0.153798i \(0.950850\pi\)
\(90\) 0 0
\(91\) −43396.5 + 7.98972e6i −0.00603685 + 1.11144i
\(92\) −5.34435e6 −0.715546
\(93\) 0 0
\(94\) 1.44618e6 0.179587
\(95\) −2.78901e6 −0.333747
\(96\) 0 0
\(97\) 1.09309e6i 0.121606i 0.998150 + 0.0608030i \(0.0193662\pi\)
−0.998150 + 0.0608030i \(0.980634\pi\)
\(98\) 1.55050e6i 0.166411i
\(99\) 0 0
\(100\) 1.51475e6 0.151475
\(101\) 1.95752e7 1.89052 0.945261 0.326316i \(-0.105807\pi\)
0.945261 + 0.326316i \(0.105807\pi\)
\(102\) 0 0
\(103\) 2.91690e6 0.263022 0.131511 0.991315i \(-0.458017\pi\)
0.131511 + 0.991315i \(0.458017\pi\)
\(104\) 22028.7 4.05570e6i 0.00192031 0.353548i
\(105\) 0 0
\(106\) 4.75701e6i 0.387939i
\(107\) −1.05834e7 −0.835187 −0.417593 0.908634i \(-0.637126\pi\)
−0.417593 + 0.908634i \(0.637126\pi\)
\(108\) 0 0
\(109\) 1.12416e7i 0.831448i −0.909491 0.415724i \(-0.863528\pi\)
0.909491 0.415724i \(-0.136472\pi\)
\(110\) 1.85347e7i 1.32774i
\(111\) 0 0
\(112\) 4.13139e6i 0.277865i
\(113\) −1.68098e7 −1.09594 −0.547971 0.836497i \(-0.684600\pi\)
−0.547971 + 0.836497i \(0.684600\pi\)
\(114\) 0 0
\(115\) 2.66424e7i 1.63355i
\(116\) −1.26645e7 −0.753328
\(117\) 0 0
\(118\) 347933. 0.0194943
\(119\) 2.57040e7i 1.39825i
\(120\) 0 0
\(121\) −3.32448e7 −1.70598
\(122\) 4.85709e6i 0.242168i
\(123\) 0 0
\(124\) 8.84531e6i 0.416617i
\(125\) 1.73745e7i 0.795660i
\(126\) 0 0
\(127\) 4.03893e7 1.74966 0.874829 0.484432i \(-0.160974\pi\)
0.874829 + 0.484432i \(0.160974\pi\)
\(128\) 2.09715e6i 0.0883883i
\(129\) 0 0
\(130\) −2.02183e7 109816.i −0.807128 0.00438395i
\(131\) −2.38235e7 −0.925882 −0.462941 0.886389i \(-0.653206\pi\)
−0.462941 + 0.886389i \(0.653206\pi\)
\(132\) 0 0
\(133\) −8.81714e6 −0.324973
\(134\) −2.66422e7 −0.956539
\(135\) 0 0
\(136\) 1.30477e7i 0.444782i
\(137\) 4.63404e7i 1.53971i −0.638221 0.769853i \(-0.720330\pi\)
0.638221 0.769853i \(-0.279670\pi\)
\(138\) 0 0
\(139\) 1.67521e7 0.529074 0.264537 0.964376i \(-0.414781\pi\)
0.264537 + 0.964376i \(0.414781\pi\)
\(140\) 2.05956e7 0.634348
\(141\) 0 0
\(142\) −2.73975e7 −0.802975
\(143\) 312432. 5.75218e7i 0.00893469 1.64496i
\(144\) 0 0
\(145\) 6.31344e7i 1.71980i
\(146\) 1.74695e7 0.464565
\(147\) 0 0
\(148\) 3.95968e6i 0.100402i
\(149\) 5.71941e7i 1.41644i 0.705991 + 0.708221i \(0.250502\pi\)
−0.705991 + 0.708221i \(0.749498\pi\)
\(150\) 0 0
\(151\) 5.99491e7i 1.41698i 0.705721 + 0.708490i \(0.250623\pi\)
−0.705721 + 0.708490i \(0.749377\pi\)
\(152\) 4.47570e6 0.103373
\(153\) 0 0
\(154\) 5.85954e7i 1.29283i
\(155\) 4.40953e7 0.951110
\(156\) 0 0
\(157\) −3.11279e7 −0.641950 −0.320975 0.947088i \(-0.604011\pi\)
−0.320975 + 0.947088i \(0.604011\pi\)
\(158\) 3.33505e7i 0.672671i
\(159\) 0 0
\(160\) −1.04546e7 −0.201785
\(161\) 8.42270e7i 1.59060i
\(162\) 0 0
\(163\) 2.52525e7i 0.456717i 0.973577 + 0.228359i \(0.0733359\pi\)
−0.973577 + 0.228359i \(0.926664\pi\)
\(164\) 5.02107e7i 0.888880i
\(165\) 0 0
\(166\) 3.32389e6 0.0563986
\(167\) 6.63359e6i 0.110215i 0.998480 + 0.0551075i \(0.0175502\pi\)
−0.998480 + 0.0551075i \(0.982450\pi\)
\(168\) 0 0
\(169\) 6.27448e7 + 681623.i 0.999941 + 0.0108628i
\(170\) −6.50448e7 −1.01541
\(171\) 0 0
\(172\) 2.82130e7 0.422765
\(173\) −2.40285e7 −0.352830 −0.176415 0.984316i \(-0.556450\pi\)
−0.176415 + 0.984316i \(0.556450\pi\)
\(174\) 0 0
\(175\) 2.38725e7i 0.336717i
\(176\) 2.97438e7i 0.411247i
\(177\) 0 0
\(178\) −1.63657e7 −0.217503
\(179\) 6.80314e7 0.886592 0.443296 0.896375i \(-0.353809\pi\)
0.443296 + 0.896375i \(0.353809\pi\)
\(180\) 0 0
\(181\) 1.78681e7 0.223977 0.111988 0.993710i \(-0.464278\pi\)
0.111988 + 0.993710i \(0.464278\pi\)
\(182\) −6.39178e7 347172.i −0.785908 0.00426870i
\(183\) 0 0
\(184\) 4.27548e7i 0.505967i
\(185\) 1.97396e7 0.229212
\(186\) 0 0
\(187\) 1.85055e8i 2.06945i
\(188\) 1.15694e7i 0.126987i
\(189\) 0 0
\(190\) 2.23121e7i 0.235995i
\(191\) 1.26330e8 1.31187 0.655934 0.754819i \(-0.272275\pi\)
0.655934 + 0.754819i \(0.272275\pi\)
\(192\) 0 0
\(193\) 8.24125e7i 0.825168i −0.910920 0.412584i \(-0.864626\pi\)
0.910920 0.412584i \(-0.135374\pi\)
\(194\) −8.74473e6 −0.0859885
\(195\) 0 0
\(196\) 1.24040e7 0.117670
\(197\) 1.65240e8i 1.53987i −0.638124 0.769933i \(-0.720289\pi\)
0.638124 0.769933i \(-0.279711\pi\)
\(198\) 0 0
\(199\) −7.27913e7 −0.654778 −0.327389 0.944890i \(-0.606169\pi\)
−0.327389 + 0.944890i \(0.606169\pi\)
\(200\) 1.21180e7i 0.107109i
\(201\) 0 0
\(202\) 1.56602e8i 1.33680i
\(203\) 1.99592e8i 1.67459i
\(204\) 0 0
\(205\) 2.50308e8 2.02926
\(206\) 2.33352e7i 0.185985i
\(207\) 0 0
\(208\) 3.24456e7 + 176229.i 0.249996 + 0.00135787i
\(209\) 6.34787e7 0.480968
\(210\) 0 0
\(211\) −1.76488e8 −1.29338 −0.646692 0.762751i \(-0.723848\pi\)
−0.646692 + 0.762751i \(0.723848\pi\)
\(212\) −3.80561e7 −0.274314
\(213\) 0 0
\(214\) 8.46675e7i 0.590566i
\(215\) 1.40646e8i 0.965147i
\(216\) 0 0
\(217\) 1.39402e8 0.926105
\(218\) 8.99328e7 0.587923
\(219\) 0 0
\(220\) −1.48278e8 −0.938850
\(221\) 2.01864e8 + 1.09643e6i 1.25802 + 0.00683296i
\(222\) 0 0
\(223\) 1.41494e8i 0.854421i 0.904152 + 0.427211i \(0.140504\pi\)
−0.904152 + 0.427211i \(0.859496\pi\)
\(224\) −3.30511e7 −0.196480
\(225\) 0 0
\(226\) 1.34478e8i 0.774948i
\(227\) 2.61188e8i 1.48205i −0.671477 0.741025i \(-0.734340\pi\)
0.671477 0.741025i \(-0.265660\pi\)
\(228\) 0 0
\(229\) 7.84396e7i 0.431630i −0.976434 0.215815i \(-0.930759\pi\)
0.976434 0.215815i \(-0.0692408\pi\)
\(230\) −2.13139e8 −1.15509
\(231\) 0 0
\(232\) 1.01316e8i 0.532684i
\(233\) −2.79209e8 −1.44605 −0.723027 0.690820i \(-0.757250\pi\)
−0.723027 + 0.690820i \(0.757250\pi\)
\(234\) 0 0
\(235\) 5.76754e7 0.289903
\(236\) 2.78346e6i 0.0137846i
\(237\) 0 0
\(238\) −2.05632e8 −0.988714
\(239\) 2.18569e8i 1.03561i 0.855499 + 0.517804i \(0.173250\pi\)
−0.855499 + 0.517804i \(0.826750\pi\)
\(240\) 0 0
\(241\) 3.20066e7i 0.147292i 0.997284 + 0.0736461i \(0.0234635\pi\)
−0.997284 + 0.0736461i \(0.976536\pi\)
\(242\) 2.65958e8i 1.20631i
\(243\) 0 0
\(244\) −3.88568e7 −0.171239
\(245\) 6.18361e7i 0.268634i
\(246\) 0 0
\(247\) −376105. + 6.92447e7i −0.00158807 + 0.292380i
\(248\) −7.07624e7 −0.294593
\(249\) 0 0
\(250\) −1.38996e8 −0.562617
\(251\) 3.12385e8 1.24690 0.623452 0.781862i \(-0.285730\pi\)
0.623452 + 0.781862i \(0.285730\pi\)
\(252\) 0 0
\(253\) 6.06389e8i 2.35413i
\(254\) 3.23114e8i 1.23719i
\(255\) 0 0
\(256\) 1.67772e7 0.0625000
\(257\) 3.60093e8 1.32327 0.661636 0.749826i \(-0.269863\pi\)
0.661636 + 0.749826i \(0.269863\pi\)
\(258\) 0 0
\(259\) 6.24045e7 0.223186
\(260\) 878532. 1.61746e8i 0.00309992 0.570726i
\(261\) 0 0
\(262\) 1.90588e8i 0.654698i
\(263\) −3.17357e8 −1.07573 −0.537865 0.843031i \(-0.680769\pi\)
−0.537865 + 0.843031i \(0.680769\pi\)
\(264\) 0 0
\(265\) 1.89715e8i 0.626242i
\(266\) 7.05371e7i 0.229790i
\(267\) 0 0
\(268\) 2.13137e8i 0.676375i
\(269\) −2.13959e8 −0.670189 −0.335095 0.942184i \(-0.608768\pi\)
−0.335095 + 0.942184i \(0.608768\pi\)
\(270\) 0 0
\(271\) 8.60078e7i 0.262510i −0.991349 0.131255i \(-0.958099\pi\)
0.991349 0.131255i \(-0.0419006\pi\)
\(272\) 1.04381e8 0.314508
\(273\) 0 0
\(274\) 3.70723e8 1.08874
\(275\) 1.71869e8i 0.498349i
\(276\) 0 0
\(277\) 6.28154e7 0.177577 0.0887886 0.996050i \(-0.471700\pi\)
0.0887886 + 0.996050i \(0.471700\pi\)
\(278\) 1.34016e8i 0.374112i
\(279\) 0 0
\(280\) 1.64765e8i 0.448551i
\(281\) 3.98236e8i 1.07070i −0.844630 0.535351i \(-0.820179\pi\)
0.844630 0.535351i \(-0.179821\pi\)
\(282\) 0 0
\(283\) −7.71807e6 −0.0202421 −0.0101211 0.999949i \(-0.503222\pi\)
−0.0101211 + 0.999949i \(0.503222\pi\)
\(284\) 2.19180e8i 0.567789i
\(285\) 0 0
\(286\) 4.60174e8 + 2.49946e6i 1.16316 + 0.00631778i
\(287\) 7.91321e8 1.97591
\(288\) 0 0
\(289\) 2.39083e8 0.582649
\(290\) −5.05075e8 −1.21608
\(291\) 0 0
\(292\) 1.39756e8i 0.328497i
\(293\) 2.50651e8i 0.582147i −0.956701 0.291073i \(-0.905988\pi\)
0.956701 0.291073i \(-0.0940123\pi\)
\(294\) 0 0
\(295\) 1.38760e7 0.0314693
\(296\) −3.16774e7 −0.0709951
\(297\) 0 0
\(298\) −4.57552e8 −1.00158
\(299\) 6.61470e8 + 3.59280e6i 1.43107 + 0.00777292i
\(300\) 0 0
\(301\) 4.44637e8i 0.939773i
\(302\) −4.79593e8 −1.00196
\(303\) 0 0
\(304\) 3.58056e7i 0.0730960i
\(305\) 1.93707e8i 0.390927i
\(306\) 0 0
\(307\) 5.43078e8i 1.07122i 0.844466 + 0.535609i \(0.179918\pi\)
−0.844466 + 0.535609i \(0.820082\pi\)
\(308\) −4.68763e8 −0.914168
\(309\) 0 0
\(310\) 3.52762e8i 0.672537i
\(311\) −3.55055e8 −0.669320 −0.334660 0.942339i \(-0.608621\pi\)
−0.334660 + 0.942339i \(0.608621\pi\)
\(312\) 0 0
\(313\) −8.33333e8 −1.53608 −0.768039 0.640403i \(-0.778767\pi\)
−0.768039 + 0.640403i \(0.778767\pi\)
\(314\) 2.49023e8i 0.453927i
\(315\) 0 0
\(316\) 2.66804e8 0.475650
\(317\) 7.90347e8i 1.39351i −0.717308 0.696756i \(-0.754626\pi\)
0.717308 0.696756i \(-0.245374\pi\)
\(318\) 0 0
\(319\) 1.43696e9i 2.47843i
\(320\) 8.36371e7i 0.142684i
\(321\) 0 0
\(322\) −6.73816e8 −1.12472
\(323\) 2.22769e8i 0.367829i
\(324\) 0 0
\(325\) −1.87481e8 1.01831e6i −0.302946 0.00164546i
\(326\) −2.02020e8 −0.322948
\(327\) 0 0
\(328\) −4.01686e8 −0.628533
\(329\) 1.82334e8 0.282281
\(330\) 0 0
\(331\) 8.53316e8i 1.29334i 0.762771 + 0.646669i \(0.223838\pi\)
−0.762771 + 0.646669i \(0.776162\pi\)
\(332\) 2.65911e7i 0.0398798i
\(333\) 0 0
\(334\) −5.30687e7 −0.0779338
\(335\) −1.06252e9 −1.54412
\(336\) 0 0
\(337\) 2.21108e8 0.314702 0.157351 0.987543i \(-0.449705\pi\)
0.157351 + 0.987543i \(0.449705\pi\)
\(338\) −5.45298e6 + 5.01959e8i −0.00768114 + 0.707065i
\(339\) 0 0
\(340\) 5.20358e8i 0.718003i
\(341\) −1.00362e9 −1.37066
\(342\) 0 0
\(343\) 6.35171e8i 0.849887i
\(344\) 2.25704e8i 0.298940i
\(345\) 0 0
\(346\) 1.92228e8i 0.249488i
\(347\) −5.58923e8 −0.718123 −0.359061 0.933314i \(-0.616903\pi\)
−0.359061 + 0.933314i \(0.616903\pi\)
\(348\) 0 0
\(349\) 1.52400e9i 1.91909i −0.281558 0.959544i \(-0.590851\pi\)
0.281558 0.959544i \(-0.409149\pi\)
\(350\) 1.90980e8 0.238095
\(351\) 0 0
\(352\) 2.37951e8 0.290795
\(353\) 1.09584e9i 1.32597i 0.748632 + 0.662986i \(0.230711\pi\)
−0.748632 + 0.662986i \(0.769289\pi\)
\(354\) 0 0
\(355\) −1.09265e9 −1.29623
\(356\) 1.30926e8i 0.153798i
\(357\) 0 0
\(358\) 5.44251e8i 0.626915i
\(359\) 5.47766e8i 0.624834i 0.949945 + 0.312417i \(0.101139\pi\)
−0.949945 + 0.312417i \(0.898861\pi\)
\(360\) 0 0
\(361\) 8.17456e8 0.914512
\(362\) 1.42945e8i 0.158375i
\(363\) 0 0
\(364\) 2.77738e6 5.11342e8i 0.00301842 0.555721i
\(365\) 6.96707e8 0.749937
\(366\) 0 0
\(367\) 4.33710e8 0.458003 0.229001 0.973426i \(-0.426454\pi\)
0.229001 + 0.973426i \(0.426454\pi\)
\(368\) 3.42038e8 0.357773
\(369\) 0 0
\(370\) 1.57917e8i 0.162077i
\(371\) 5.99764e8i 0.609778i
\(372\) 0 0
\(373\) 4.38624e8 0.437635 0.218817 0.975766i \(-0.429780\pi\)
0.218817 + 0.975766i \(0.429780\pi\)
\(374\) 1.48044e9 1.46332
\(375\) 0 0
\(376\) −9.25553e7 −0.0897933
\(377\) 1.56748e9 + 8.51385e6i 1.50663 + 0.00818335i
\(378\) 0 0
\(379\) 4.68589e8i 0.442135i −0.975259 0.221067i \(-0.929046\pi\)
0.975259 0.221067i \(-0.0709540\pi\)
\(380\) 1.78497e8 0.166874
\(381\) 0 0
\(382\) 1.01064e9i 0.927630i
\(383\) 1.15286e9i 1.04853i −0.851555 0.524265i \(-0.824340\pi\)
0.851555 0.524265i \(-0.175660\pi\)
\(384\) 0 0
\(385\) 2.33686e9i 2.08699i
\(386\) 6.59300e8 0.583482
\(387\) 0 0
\(388\) 6.99578e7i 0.0608030i
\(389\) 7.44354e8 0.641145 0.320572 0.947224i \(-0.396125\pi\)
0.320572 + 0.947224i \(0.396125\pi\)
\(390\) 0 0
\(391\) 2.12803e9 1.80036
\(392\) 9.92323e7i 0.0832054i
\(393\) 0 0
\(394\) 1.32192e9 1.08885
\(395\) 1.33006e9i 1.08588i
\(396\) 0 0
\(397\) 1.02930e9i 0.825610i 0.910819 + 0.412805i \(0.135451\pi\)
−0.910819 + 0.412805i \(0.864549\pi\)
\(398\) 5.82331e8i 0.462998i
\(399\) 0 0
\(400\) −9.69441e7 −0.0757376
\(401\) 9.81488e8i 0.760116i 0.924963 + 0.380058i \(0.124096\pi\)
−0.924963 + 0.380058i \(0.875904\pi\)
\(402\) 0 0
\(403\) 5.94636e6 1.09478e9i 0.00452568 0.833222i
\(404\) −1.25281e9 −0.945261
\(405\) 0 0
\(406\) −1.59674e9 −1.18411
\(407\) −4.49279e8 −0.330321
\(408\) 0 0
\(409\) 2.27543e9i 1.64449i 0.569132 + 0.822246i \(0.307279\pi\)
−0.569132 + 0.822246i \(0.692721\pi\)
\(410\) 2.00247e9i 1.43490i
\(411\) 0 0
\(412\) −1.86682e8 −0.131511
\(413\) 4.38674e7 0.0306420
\(414\) 0 0
\(415\) 1.32561e8 0.0910431
\(416\) −1.40984e6 + 2.59564e8i −0.000960156 + 0.176774i
\(417\) 0 0
\(418\) 5.07829e8i 0.340096i
\(419\) 7.89660e8 0.524435 0.262217 0.965009i \(-0.415546\pi\)
0.262217 + 0.965009i \(0.415546\pi\)
\(420\) 0 0
\(421\) 2.16620e9i 1.41485i 0.706787 + 0.707426i \(0.250144\pi\)
−0.706787 + 0.707426i \(0.749856\pi\)
\(422\) 1.41191e9i 0.914561i
\(423\) 0 0
\(424\) 3.04448e8i 0.193969i
\(425\) −6.03150e8 −0.381122
\(426\) 0 0
\(427\) 6.12383e8i 0.380650i
\(428\) 6.77340e8 0.417593
\(429\) 0 0
\(430\) 1.12517e9 0.682462
\(431\) 1.22325e9i 0.735947i 0.929836 + 0.367973i \(0.119948\pi\)
−0.929836 + 0.367973i \(0.880052\pi\)
\(432\) 0 0
\(433\) −4.78952e8 −0.283520 −0.141760 0.989901i \(-0.545276\pi\)
−0.141760 + 0.989901i \(0.545276\pi\)
\(434\) 1.11522e9i 0.654855i
\(435\) 0 0
\(436\) 7.19462e8i 0.415724i
\(437\) 7.29971e8i 0.418428i
\(438\) 0 0
\(439\) 2.02013e9 1.13960 0.569802 0.821782i \(-0.307020\pi\)
0.569802 + 0.821782i \(0.307020\pi\)
\(440\) 1.18622e9i 0.663868i
\(441\) 0 0
\(442\) −8.77146e6 + 1.61491e9i −0.00483164 + 0.889551i
\(443\) 7.36847e8 0.402684 0.201342 0.979521i \(-0.435470\pi\)
0.201342 + 0.979521i \(0.435470\pi\)
\(444\) 0 0
\(445\) −6.52685e8 −0.351110
\(446\) −1.13195e9 −0.604167
\(447\) 0 0
\(448\) 2.64409e8i 0.138932i
\(449\) 1.76768e9i 0.921596i 0.887505 + 0.460798i \(0.152437\pi\)
−0.887505 + 0.460798i \(0.847563\pi\)
\(450\) 0 0
\(451\) −5.69709e9 −2.92439
\(452\) 1.07583e9 0.547971
\(453\) 0 0
\(454\) 2.08951e9 1.04797
\(455\) −2.54912e9 1.38457e7i −1.26868 0.00689087i
\(456\) 0 0
\(457\) 2.18099e8i 0.106892i −0.998571 0.0534462i \(-0.982979\pi\)
0.998571 0.0534462i \(-0.0170206\pi\)
\(458\) 6.27517e8 0.305208
\(459\) 0 0
\(460\) 1.70511e9i 0.816773i
\(461\) 7.87784e8i 0.374502i −0.982312 0.187251i \(-0.940042\pi\)
0.982312 0.187251i \(-0.0599577\pi\)
\(462\) 0 0
\(463\) 1.57223e9i 0.736178i 0.929791 + 0.368089i \(0.119988\pi\)
−0.929791 + 0.368089i \(0.880012\pi\)
\(464\) 8.10527e8 0.376664
\(465\) 0 0
\(466\) 2.23368e9i 1.02251i
\(467\) 9.07954e8 0.412529 0.206265 0.978496i \(-0.433869\pi\)
0.206265 + 0.978496i \(0.433869\pi\)
\(468\) 0 0
\(469\) −3.35905e9 −1.50353
\(470\) 4.61403e8i 0.204992i
\(471\) 0 0
\(472\) −2.22677e7 −0.00974716
\(473\) 3.20115e9i 1.39089i
\(474\) 0 0
\(475\) 2.06896e8i 0.0885778i
\(476\) 1.64505e9i 0.699126i
\(477\) 0 0
\(478\) −1.74855e9 −0.732285
\(479\) 2.23883e9i 0.930779i −0.885106 0.465390i \(-0.845914\pi\)
0.885106 0.465390i \(-0.154086\pi\)
\(480\) 0 0
\(481\) 2.66194e6 4.90089e8i 0.00109066 0.200802i
\(482\) −2.56053e8 −0.104151
\(483\) 0 0
\(484\) 2.12766e9 0.852991
\(485\) −3.48751e8 −0.138810
\(486\) 0 0
\(487\) 3.07668e9i 1.20706i −0.797338 0.603532i \(-0.793759\pi\)
0.797338 0.603532i \(-0.206241\pi\)
\(488\) 3.10854e8i 0.121084i
\(489\) 0 0
\(490\) 4.94689e8 0.189953
\(491\) −2.48221e9 −0.946354 −0.473177 0.880967i \(-0.656893\pi\)
−0.473177 + 0.880967i \(0.656893\pi\)
\(492\) 0 0
\(493\) 5.04279e9 1.89543
\(494\) −5.53957e8 3.00884e6i −0.206744 0.00112294i
\(495\) 0 0
\(496\) 5.66100e8i 0.208308i
\(497\) −3.45428e9 −1.26215
\(498\) 0 0
\(499\) 2.24551e8i 0.0809026i 0.999182 + 0.0404513i \(0.0128796\pi\)
−0.999182 + 0.0404513i \(0.987120\pi\)
\(500\) 1.11197e9i 0.397830i
\(501\) 0 0
\(502\) 2.49908e9i 0.881694i
\(503\) −6.52953e8 −0.228767 −0.114384 0.993437i \(-0.536489\pi\)
−0.114384 + 0.993437i \(0.536489\pi\)
\(504\) 0 0
\(505\) 6.24547e9i 2.15797i
\(506\) 4.85111e9 1.66462
\(507\) 0 0
\(508\) −2.58491e9 −0.874829
\(509\) 1.82791e8i 0.0614389i −0.999528 0.0307195i \(-0.990220\pi\)
0.999528 0.0307195i \(-0.00977985\pi\)
\(510\) 0 0
\(511\) 2.20256e9 0.730221
\(512\) 1.34218e8i 0.0441942i
\(513\) 0 0
\(514\) 2.88074e9i 0.935694i
\(515\) 9.30639e8i 0.300231i
\(516\) 0 0
\(517\) −1.31271e9 −0.417784
\(518\) 4.99236e8i 0.157816i
\(519\) 0 0
\(520\) 1.29397e9 + 7.02826e6i 0.403564 + 0.00219198i
\(521\) −5.23398e9 −1.62144 −0.810718 0.585437i \(-0.800923\pi\)
−0.810718 + 0.585437i \(0.800923\pi\)
\(522\) 0 0
\(523\) −3.93597e9 −1.20308 −0.601542 0.798841i \(-0.705447\pi\)
−0.601542 + 0.798841i \(0.705447\pi\)
\(524\) 1.52470e9 0.462941
\(525\) 0 0
\(526\) 2.53886e9i 0.760655i
\(527\) 3.52206e9i 1.04824i
\(528\) 0 0
\(529\) 3.56833e9 1.04802
\(530\) −1.51772e9 −0.442820
\(531\) 0 0
\(532\) 5.64297e8 0.162486
\(533\) 3.37548e7 6.21458e9i 0.00965583 1.77773i
\(534\) 0 0
\(535\) 3.37665e9i 0.953340i
\(536\) 1.70510e9 0.478270
\(537\) 0 0
\(538\) 1.71167e9i 0.473895i
\(539\) 1.40741e9i 0.387132i
\(540\) 0 0
\(541\) 1.96466e9i 0.533455i −0.963772 0.266727i \(-0.914058\pi\)
0.963772 0.266727i \(-0.0859424\pi\)
\(542\) 6.88063e8 0.185622
\(543\) 0 0
\(544\) 8.35052e8i 0.222391i
\(545\) 3.58663e9 0.949072
\(546\) 0 0
\(547\) −6.37181e8 −0.166459 −0.0832295 0.996530i \(-0.526523\pi\)
−0.0832295 + 0.996530i \(0.526523\pi\)
\(548\) 2.96579e9i 0.769853i
\(549\) 0 0
\(550\) −1.37495e9 −0.352386
\(551\) 1.72981e9i 0.440522i
\(552\) 0 0
\(553\) 4.20483e9i 1.05733i
\(554\) 5.02524e8i 0.125566i
\(555\) 0 0
\(556\) −1.07213e9 −0.264537
\(557\) 5.17753e9i 1.26949i 0.772721 + 0.634745i \(0.218895\pi\)
−0.772721 + 0.634745i \(0.781105\pi\)
\(558\) 0 0
\(559\) −3.49192e9 1.89665e7i −0.845518 0.00459247i
\(560\) −1.31812e9 −0.317174
\(561\) 0 0
\(562\) 3.18589e9 0.757101
\(563\) −1.67722e9 −0.396105 −0.198052 0.980191i \(-0.563462\pi\)
−0.198052 + 0.980191i \(0.563462\pi\)
\(564\) 0 0
\(565\) 5.36317e9i 1.25098i
\(566\) 6.17446e7i 0.0143133i
\(567\) 0 0
\(568\) 1.75344e9 0.401487
\(569\) 4.19299e9 0.954181 0.477090 0.878854i \(-0.341691\pi\)
0.477090 + 0.878854i \(0.341691\pi\)
\(570\) 0 0
\(571\) −8.30446e8 −0.186674 −0.0933372 0.995635i \(-0.529753\pi\)
−0.0933372 + 0.995635i \(0.529753\pi\)
\(572\) −1.99956e7 + 3.68139e9i −0.00446734 + 0.822481i
\(573\) 0 0
\(574\) 6.33057e9i 1.39718i
\(575\) −1.97641e9 −0.433550
\(576\) 0 0
\(577\) 7.17557e9i 1.55504i −0.628859 0.777520i \(-0.716478\pi\)
0.628859 0.777520i \(-0.283522\pi\)
\(578\) 1.91267e9i 0.411995i
\(579\) 0 0
\(580\) 4.04060e9i 0.859901i
\(581\) 4.19076e8 0.0886495
\(582\) 0 0
\(583\) 4.31798e9i 0.902486i
\(584\) −1.11805e9 −0.232282
\(585\) 0 0
\(586\) 2.00521e9 0.411640
\(587\) 5.83672e9i 1.19106i −0.803331 0.595532i \(-0.796941\pi\)
0.803331 0.595532i \(-0.203059\pi\)
\(588\) 0 0
\(589\) 1.20816e9 0.243624
\(590\) 1.11008e8i 0.0222522i
\(591\) 0 0
\(592\) 2.53419e8i 0.0502011i
\(593\) 1.90799e9i 0.375737i 0.982194 + 0.187869i \(0.0601579\pi\)
−0.982194 + 0.187869i \(0.939842\pi\)
\(594\) 0 0
\(595\) −8.20085e9 −1.59606
\(596\) 3.66042e9i 0.708221i
\(597\) 0 0
\(598\) −2.87424e7 + 5.29176e9i −0.00549628 + 1.01192i
\(599\) −4.94369e9 −0.939847 −0.469924 0.882707i \(-0.655719\pi\)
−0.469924 + 0.882707i \(0.655719\pi\)
\(600\) 0 0
\(601\) 1.86163e9 0.349810 0.174905 0.984585i \(-0.444038\pi\)
0.174905 + 0.984585i \(0.444038\pi\)
\(602\) 3.55710e9 0.664520
\(603\) 0 0
\(604\) 3.83675e9i 0.708490i
\(605\) 1.06067e10i 1.94732i
\(606\) 0 0
\(607\) −2.86458e8 −0.0519878 −0.0259939 0.999662i \(-0.508275\pi\)
−0.0259939 + 0.999662i \(0.508275\pi\)
\(608\) −2.86445e8 −0.0516867
\(609\) 0 0
\(610\) −1.54966e9 −0.276427
\(611\) 7.77768e6 1.43195e9i 0.00137945 0.253970i
\(612\) 0 0
\(613\) 6.75234e9i 1.18398i −0.805947 0.591988i \(-0.798343\pi\)
0.805947 0.591988i \(-0.201657\pi\)
\(614\) −4.34462e9 −0.757466
\(615\) 0 0
\(616\) 3.75010e9i 0.646414i
\(617\) 2.16934e8i 0.0371817i −0.999827 0.0185909i \(-0.994082\pi\)
0.999827 0.0185909i \(-0.00591799\pi\)
\(618\) 0 0
\(619\) 8.84627e9i 1.49914i 0.661924 + 0.749571i \(0.269740\pi\)
−0.661924 + 0.749571i \(0.730260\pi\)
\(620\) −2.82210e9 −0.475555
\(621\) 0 0
\(622\) 2.84044e9i 0.473281i
\(623\) −2.06339e9 −0.341879
\(624\) 0 0
\(625\) −7.39240e9 −1.21117
\(626\) 6.66666e9i 1.08617i
\(627\) 0 0
\(628\) 1.99219e9 0.320975
\(629\) 1.57668e9i 0.252619i
\(630\) 0 0
\(631\) 7.03063e9i 1.11402i 0.830507 + 0.557008i \(0.188051\pi\)
−0.830507 + 0.557008i \(0.811949\pi\)
\(632\) 2.13443e9i 0.336335i
\(633\) 0 0
\(634\) 6.32278e9 0.985362
\(635\) 1.28862e10i 1.99718i
\(636\) 0 0
\(637\) −1.53525e9 8.33876e6i −0.235337 0.00127824i
\(638\) 1.14957e10 1.75252
\(639\) 0 0
\(640\) 6.69097e8 0.100893
\(641\) 6.42851e8 0.0964068 0.0482034 0.998838i \(-0.484650\pi\)
0.0482034 + 0.998838i \(0.484650\pi\)
\(642\) 0 0
\(643\) 1.02399e10i 1.51900i 0.650507 + 0.759501i \(0.274557\pi\)
−0.650507 + 0.759501i \(0.725443\pi\)
\(644\) 5.39053e9i 0.795299i
\(645\) 0 0
\(646\) −1.78215e9 −0.260094
\(647\) −1.08730e10 −1.57829 −0.789144 0.614208i \(-0.789476\pi\)
−0.789144 + 0.614208i \(0.789476\pi\)
\(648\) 0 0
\(649\) −3.15822e8 −0.0453509
\(650\) 8.14648e6 1.49985e9i 0.00116352 0.214215i
\(651\) 0 0
\(652\) 1.61616e9i 0.228359i
\(653\) 3.68093e9 0.517322 0.258661 0.965968i \(-0.416719\pi\)
0.258661 + 0.965968i \(0.416719\pi\)
\(654\) 0 0
\(655\) 7.60089e9i 1.05687i
\(656\) 3.21349e9i 0.444440i
\(657\) 0 0
\(658\) 1.45867e9i 0.199603i
\(659\) 1.41639e10 1.92790 0.963951 0.266078i \(-0.0857280\pi\)
0.963951 + 0.266078i \(0.0857280\pi\)
\(660\) 0 0
\(661\) 5.78170e9i 0.778665i 0.921097 + 0.389332i \(0.127294\pi\)
−0.921097 + 0.389332i \(0.872706\pi\)
\(662\) −6.82653e9 −0.914528
\(663\) 0 0
\(664\) −2.12729e8 −0.0281993
\(665\) 2.81311e9i 0.370946i
\(666\) 0 0
\(667\) 1.65243e10 2.15616
\(668\) 4.24549e8i 0.0551075i
\(669\) 0 0
\(670\) 8.50019e9i 1.09186i
\(671\) 4.40883e9i 0.563371i
\(672\) 0 0
\(673\) −1.96225e8 −0.0248143 −0.0124071 0.999923i \(-0.503949\pi\)
−0.0124071 + 0.999923i \(0.503949\pi\)
\(674\) 1.76886e9i 0.222528i
\(675\) 0 0
\(676\) −4.01567e9 4.36238e7i −0.499970 0.00543138i
\(677\) −2.79910e9 −0.346703 −0.173351 0.984860i \(-0.555460\pi\)
−0.173351 + 0.984860i \(0.555460\pi\)
\(678\) 0 0
\(679\) −1.10254e9 −0.135160
\(680\) 4.16287e9 0.507705
\(681\) 0 0
\(682\) 8.02897e9i 0.969202i
\(683\) 6.64284e9i 0.797776i −0.917000 0.398888i \(-0.869396\pi\)
0.917000 0.398888i \(-0.130604\pi\)
\(684\) 0 0
\(685\) 1.47849e10 1.75753
\(686\) −5.08137e9 −0.600961
\(687\) 0 0
\(688\) −1.80563e9 −0.211383
\(689\) 4.71020e9 + 2.55836e7i 0.548620 + 0.00297985i
\(690\) 0 0
\(691\) 5.54998e9i 0.639909i −0.947433 0.319955i \(-0.896332\pi\)
0.947433 0.319955i \(-0.103668\pi\)
\(692\) 1.53782e9 0.176415
\(693\) 0 0
\(694\) 4.47138e9i 0.507789i
\(695\) 5.34475e9i 0.603921i
\(696\) 0 0
\(697\) 1.99931e10i 2.23648i
\(698\) 1.21920e10 1.35700
\(699\) 0 0
\(700\) 1.52784e9i 0.168358i
\(701\) 1.09055e10 1.19572 0.597862 0.801599i \(-0.296017\pi\)
0.597862 + 0.801599i \(0.296017\pi\)
\(702\) 0 0
\(703\) 5.40842e8 0.0587120
\(704\) 1.90360e9i 0.205623i
\(705\) 0 0
\(706\) −8.76669e9 −0.937604
\(707\) 1.97444e10i 2.10124i
\(708\) 0 0
\(709\) 4.89719e9i 0.516042i −0.966139 0.258021i \(-0.916930\pi\)
0.966139 0.258021i \(-0.0830704\pi\)
\(710\) 8.74118e9i 0.916571i
\(711\) 0 0
\(712\) 1.04741e9 0.108751
\(713\) 1.15411e10i 1.19243i
\(714\) 0 0
\(715\) 1.83523e10 + 9.96815e7i 1.87767 + 0.0101987i
\(716\) −4.35401e9 −0.443296
\(717\) 0 0
\(718\) −4.38213e9 −0.441824
\(719\) −3.27973e9 −0.329069 −0.164535 0.986371i \(-0.552612\pi\)
−0.164535 + 0.986371i \(0.552612\pi\)
\(720\) 0 0
\(721\) 2.94211e9i 0.292338i
\(722\) 6.53965e9i 0.646657i
\(723\) 0 0
\(724\) −1.14356e9 −0.111988
\(725\) −4.68348e9 −0.456442
\(726\) 0 0
\(727\) −7.76073e9 −0.749087 −0.374543 0.927209i \(-0.622201\pi\)
−0.374543 + 0.927209i \(0.622201\pi\)
\(728\) 4.09074e9 + 2.22190e7i 0.392954 + 0.00213435i
\(729\) 0 0
\(730\) 5.57365e9i 0.530286i
\(731\) −1.12340e10 −1.06371
\(732\) 0 0
\(733\) 1.82989e10i 1.71618i 0.513502 + 0.858088i \(0.328348\pi\)
−0.513502 + 0.858088i \(0.671652\pi\)
\(734\) 3.46968e9i 0.323857i
\(735\) 0 0
\(736\) 2.73631e9i 0.252984i
\(737\) 2.41833e10 2.22526
\(738\) 0 0
\(739\) 7.96616e8i 0.0726095i 0.999341 + 0.0363048i \(0.0115587\pi\)
−0.999341 + 0.0363048i \(0.988441\pi\)
\(740\) −1.26334e9 −0.114606
\(741\) 0 0
\(742\) −4.79811e9 −0.431178
\(743\) 4.75982e7i 0.00425726i 0.999998 + 0.00212863i \(0.000677564\pi\)
−0.999998 + 0.00212863i \(0.999322\pi\)
\(744\) 0 0
\(745\) −1.82478e10 −1.61682
\(746\) 3.50899e9i 0.309454i
\(747\) 0 0
\(748\) 1.18435e10i 1.03472i
\(749\) 1.06749e10i 0.928276i
\(750\) 0 0
\(751\) −1.41304e10 −1.21735 −0.608673 0.793421i \(-0.708298\pi\)
−0.608673 + 0.793421i \(0.708298\pi\)
\(752\) 7.40443e8i 0.0634935i
\(753\) 0 0
\(754\) −6.81108e7 + 1.25399e10i −0.00578650 + 1.06535i
\(755\) −1.91268e10 −1.61744
\(756\) 0 0
\(757\) −1.05665e10 −0.885314 −0.442657 0.896691i \(-0.645964\pi\)
−0.442657 + 0.896691i \(0.645964\pi\)
\(758\) 3.74871e9 0.312636
\(759\) 0 0
\(760\) 1.42797e9i 0.117997i
\(761\) 1.95804e10i 1.61055i 0.592901 + 0.805275i \(0.297982\pi\)
−0.592901 + 0.805275i \(0.702018\pi\)
\(762\) 0 0
\(763\) 1.13387e10 0.924120
\(764\) −8.08512e9 −0.655934
\(765\) 0 0
\(766\) 9.22288e9 0.741423
\(767\) 1.87122e6 3.44509e8i 0.000149741 0.0275687i
\(768\) 0 0
\(769\) 1.01771e10i 0.807012i 0.914977 + 0.403506i \(0.132209\pi\)
−0.914977 + 0.403506i \(0.867791\pi\)
\(770\) −1.86949e10 −1.47572
\(771\) 0 0
\(772\) 5.27440e9i 0.412584i
\(773\) 2.31166e9i 0.180009i 0.995941 + 0.0900047i \(0.0286882\pi\)
−0.995941 + 0.0900047i \(0.971312\pi\)
\(774\) 0 0
\(775\) 3.27110e9i 0.252429i
\(776\) 5.59663e8 0.0429942
\(777\) 0 0
\(778\) 5.95484e9i 0.453358i
\(779\) 6.85816e9 0.519788
\(780\) 0 0
\(781\) 2.48690e10 1.86801
\(782\) 1.70243e10i 1.27305i
\(783\) 0 0
\(784\) −7.93858e8 −0.0588351
\(785\) 9.93137e9i 0.732766i
\(786\) 0 0
\(787\) 2.61033e9i 0.190890i −0.995435 0.0954450i \(-0.969573\pi\)
0.995435 0.0954450i \(-0.0304274\pi\)
\(788\) 1.05754e10i 0.769933i
\(789\) 0 0
\(790\) 1.06405e10 0.767833
\(791\) 1.69550e10i 1.21810i
\(792\) 0 0
\(793\) 4.80930e9 + 2.61219e7i 0.342473 + 0.00186015i
\(794\) −8.23440e9 −0.583795
\(795\) 0 0
\(796\) 4.65865e9 0.327389
\(797\) 2.30473e10 1.61256 0.806279 0.591536i \(-0.201478\pi\)
0.806279 + 0.591536i \(0.201478\pi\)
\(798\) 0 0
\(799\) 4.60675e9i 0.319508i
\(800\) 7.75553e8i 0.0535546i
\(801\) 0 0
\(802\) −7.85191e9 −0.537483
\(803\) −1.58573e10 −1.08075
\(804\) 0 0
\(805\) −2.68726e10 −1.81562
\(806\) 8.75827e9 + 4.75709e7i 0.589177 + 0.00320014i
\(807\) 0 0
\(808\) 1.00225e10i 0.668400i
\(809\) 2.25879e10 1.49988 0.749938 0.661508i \(-0.230083\pi\)
0.749938 + 0.661508i \(0.230083\pi\)
\(810\) 0 0
\(811\) 2.33114e10i 1.53460i 0.641290 + 0.767299i \(0.278400\pi\)
−0.641290 + 0.767299i \(0.721600\pi\)
\(812\) 1.27739e10i 0.837293i
\(813\) 0 0
\(814\) 3.59423e9i 0.233572i
\(815\) −8.05681e9 −0.521328
\(816\) 0 0
\(817\) 3.85354e9i 0.247220i
\(818\) −1.82034e10 −1.16283
\(819\) 0 0
\(820\) −1.60197e10 −1.01463
\(821\) 1.14906e10i 0.724673i 0.932047 + 0.362337i \(0.118021\pi\)
−0.932047 + 0.362337i \(0.881979\pi\)
\(822\) 0 0
\(823\) −1.06159e9 −0.0663833 −0.0331916 0.999449i \(-0.510567\pi\)
−0.0331916 + 0.999449i \(0.510567\pi\)
\(824\) 1.49346e9i 0.0929923i
\(825\) 0 0
\(826\) 3.50939e8i 0.0216671i
\(827\) 6.50961e9i 0.400208i 0.979775 + 0.200104i \(0.0641280\pi\)
−0.979775 + 0.200104i \(0.935872\pi\)
\(828\) 0 0
\(829\) 9.62128e9 0.586532 0.293266 0.956031i \(-0.405258\pi\)
0.293266 + 0.956031i \(0.405258\pi\)
\(830\) 1.06049e9i 0.0643772i
\(831\) 0 0
\(832\) −2.07652e9 1.12787e7i −0.124998 0.000678933i
\(833\) −4.93908e9 −0.296066
\(834\) 0 0
\(835\) −2.11645e9 −0.125807
\(836\) −4.06264e9 −0.240484
\(837\) 0 0
\(838\) 6.31728e9i 0.370831i
\(839\) 2.21131e10i 1.29265i 0.763061 + 0.646327i \(0.223696\pi\)
−0.763061 + 0.646327i \(0.776304\pi\)
\(840\) 0 0
\(841\) 2.19076e10 1.27001
\(842\) −1.73296e10 −1.00045
\(843\) 0 0
\(844\) 1.12953e10 0.646692
\(845\) −2.17472e8 + 2.00187e10i −0.0123995 + 1.14140i
\(846\) 0 0
\(847\) 3.35320e10i 1.89613i
\(848\) 2.43559e9 0.137157
\(849\) 0 0
\(850\) 4.82520e9i 0.269494i
\(851\) 5.16647e9i 0.287370i
\(852\) 0 0
\(853\) 2.61062e10i 1.44019i 0.693873 + 0.720097i \(0.255903\pi\)
−0.693873 + 0.720097i \(0.744097\pi\)
\(854\) −4.89906e9 −0.269160
\(855\) 0 0
\(856\) 5.41872e9i 0.295283i
\(857\) −4.81819e9 −0.261487 −0.130744 0.991416i \(-0.541736\pi\)
−0.130744 + 0.991416i \(0.541736\pi\)
\(858\) 0 0
\(859\) −2.95711e10 −1.59181 −0.795905 0.605421i \(-0.793005\pi\)
−0.795905 + 0.605421i \(0.793005\pi\)
\(860\) 9.00136e9i 0.482573i
\(861\) 0 0
\(862\) −9.78604e9 −0.520393
\(863\) 1.65072e10i 0.874248i −0.899401 0.437124i \(-0.855997\pi\)
0.899401 0.437124i \(-0.144003\pi\)
\(864\) 0 0
\(865\) 7.66630e9i 0.402744i
\(866\) 3.83162e9i 0.200479i
\(867\) 0 0
\(868\) −8.92174e9 −0.463053
\(869\) 3.02726e10i 1.56488i
\(870\) 0 0
\(871\) −1.43284e8 + 2.63800e10i −0.00734741 + 1.35273i
\(872\) −5.75570e9 −0.293961
\(873\) 0 0
\(874\) −5.83977e9 −0.295873
\(875\) −1.75246e10 −0.884343
\(876\) 0 0
\(877\) 1.45908e9i 0.0730434i −0.999333 0.0365217i \(-0.988372\pi\)
0.999333 0.0365217i \(-0.0116278\pi\)
\(878\) 1.61611e10i 0.805822i
\(879\) 0 0
\(880\) 9.48977e9 0.469425
\(881\) 2.84404e10 1.40127 0.700633 0.713522i \(-0.252901\pi\)
0.700633 + 0.713522i \(0.252901\pi\)
\(882\) 0 0
\(883\) 1.81412e10 0.886754 0.443377 0.896335i \(-0.353780\pi\)
0.443377 + 0.896335i \(0.353780\pi\)
\(884\) −1.29193e10 7.01717e7i −0.629008 0.00341648i
\(885\) 0 0
\(886\) 5.89478e9i 0.284741i
\(887\) −2.33252e10 −1.12226 −0.561130 0.827728i \(-0.689633\pi\)
−0.561130 + 0.827728i \(0.689633\pi\)
\(888\) 0 0
\(889\) 4.07383e10i 1.94467i
\(890\) 5.22148e9i 0.248273i
\(891\) 0 0
\(892\) 9.05564e9i 0.427211i
\(893\) 1.58024e9 0.0742579
\(894\) 0 0
\(895\) 2.17054e10i 1.01202i
\(896\) 2.11527e9 0.0982400
\(897\) 0 0
\(898\) −1.41414e10 −0.651667
\(899\) 2.73489e10i 1.25540i
\(900\) 0 0
\(901\) 1.51533e10 0.690193
\(902\) 4.55767e10i 2.06786i
\(903\) 0 0
\(904\) 8.60661e9i 0.387474i
\(905\) 5.70081e9i 0.255662i
\(906\) 0 0
\(907\) −1.35577e9 −0.0603340 −0.0301670 0.999545i \(-0.509604\pi\)
−0.0301670 + 0.999545i \(0.509604\pi\)
\(908\) 1.67160e10i 0.741025i
\(909\) 0 0
\(910\) 1.10765e8 2.03930e10i 0.00487258 0.897090i
\(911\) 1.32864e10 0.582227 0.291114 0.956689i \(-0.405974\pi\)
0.291114 + 0.956689i \(0.405974\pi\)
\(912\) 0 0
\(913\) −3.01712e9 −0.131203
\(914\) 1.74479e9 0.0755843
\(915\) 0 0
\(916\) 5.02014e9i 0.215815i
\(917\) 2.40293e10i 1.02908i
\(918\) 0 0
\(919\) −3.60465e10 −1.53200 −0.766000 0.642840i \(-0.777756\pi\)
−0.766000 + 0.642840i \(0.777756\pi\)
\(920\) 1.36409e10 0.577546
\(921\) 0 0
\(922\) 6.30227e9 0.264813
\(923\) −1.47346e8 + 2.71279e10i −0.00616785 + 1.13556i
\(924\) 0 0
\(925\) 1.46434e9i 0.0608338i
\(926\) −1.25779e10 −0.520557
\(927\) 0 0
\(928\) 6.48421e9i 0.266342i
\(929\) 4.64342e10i 1.90013i −0.312054 0.950064i \(-0.601017\pi\)
0.312054 0.950064i \(-0.398983\pi\)
\(930\) 0 0
\(931\) 1.69424e9i 0.0688098i
\(932\) 1.78694e10 0.723027
\(933\) 0 0
\(934\) 7.26363e9i 0.291702i
\(935\) 5.90418e10 2.36221
\(936\) 0 0
\(937\) 3.86501e10 1.53484 0.767418 0.641148i \(-0.221541\pi\)
0.767418 + 0.641148i \(0.221541\pi\)
\(938\) 2.68724e10i 1.06315i
\(939\) 0 0
\(940\) −3.69122e9 −0.144952
\(941\) 2.74177e10i 1.07267i 0.844005 + 0.536336i \(0.180192\pi\)
−0.844005 + 0.536336i \(0.819808\pi\)
\(942\) 0 0
\(943\) 6.55135e10i 2.54414i
\(944\) 1.78142e8i 0.00689229i
\(945\) 0 0
\(946\) −2.56092e10 −0.983506
\(947\) 1.39667e10i 0.534403i −0.963641 0.267202i \(-0.913901\pi\)
0.963641 0.267202i \(-0.0860990\pi\)
\(948\) 0 0
\(949\) 9.39528e7 1.72976e10i 0.00356844 0.656984i
\(950\) 1.65517e9 0.0626340
\(951\) 0 0
\(952\) 1.31604e10 0.494357
\(953\) −2.75080e10 −1.02952 −0.514759 0.857335i \(-0.672119\pi\)
−0.514759 + 0.857335i \(0.672119\pi\)
\(954\) 0 0
\(955\) 4.03056e10i 1.49746i
\(956\) 1.39884e10i 0.517804i
\(957\) 0 0
\(958\) 1.79106e10 0.658160
\(959\) 4.67408e10 1.71132
\(960\) 0 0
\(961\) 8.41119e9 0.305721
\(962\) 3.92071e9 + 2.12955e7i 0.141988 + 0.000771215i
\(963\) 0 0
\(964\) 2.04842e9i 0.0736461i
\(965\) 2.62937e10 0.941903
\(966\) 0 0
\(967\) 1.15208e10i 0.409722i −0.978791 0.204861i \(-0.934326\pi\)
0.978791 0.204861i \(-0.0656742\pi\)
\(968\) 1.70213e10i 0.603156i
\(969\) 0 0
\(970\) 2.79001e9i 0.0981531i
\(971\) −1.91388e10 −0.670885 −0.335443 0.942061i \(-0.608886\pi\)
−0.335443 + 0.942061i \(0.608886\pi\)
\(972\) 0 0
\(973\) 1.68968e10i 0.588044i
\(974\) 2.46134e10 0.853524
\(975\) 0 0
\(976\) 2.48683e9 0.0856194
\(977\) 3.56631e10i 1.22345i 0.791069 + 0.611727i \(0.209525\pi\)
−0.791069 + 0.611727i \(0.790475\pi\)
\(978\) 0 0
\(979\) 1.48553e10 0.505990
\(980\) 3.95751e9i 0.134317i
\(981\) 0 0
\(982\) 1.98577e10i 0.669173i
\(983\) 2.95255e9i 0.0991424i 0.998771 + 0.0495712i \(0.0157855\pi\)
−0.998771 + 0.0495712i \(0.984215\pi\)
\(984\) 0 0
\(985\) 5.27198e10 1.75771
\(986\) 4.03423e10i 1.34027i
\(987\) 0 0
\(988\) 2.40708e7 4.43166e9i 0.000794036 0.146190i
\(989\) −3.68115e10 −1.21003
\(990\) 0 0
\(991\) −6.91025e9 −0.225547 −0.112773 0.993621i \(-0.535973\pi\)
−0.112773 + 0.993621i \(0.535973\pi\)
\(992\) 4.52880e9 0.147296
\(993\) 0 0
\(994\) 2.76342e10i 0.892473i
\(995\) 2.32241e10i 0.747408i
\(996\) 0 0
\(997\) 9.16218e9 0.292797 0.146398 0.989226i \(-0.453232\pi\)
0.146398 + 0.989226i \(0.453232\pi\)
\(998\) −1.79640e9 −0.0572068
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.8.b.c.181.9 10
3.2 odd 2 26.8.b.a.25.2 10
12.11 even 2 208.8.f.c.129.7 10
13.12 even 2 inner 234.8.b.c.181.2 10
39.5 even 4 338.8.a.k.1.2 5
39.8 even 4 338.8.a.l.1.2 5
39.38 odd 2 26.8.b.a.25.7 yes 10
156.155 even 2 208.8.f.c.129.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.8.b.a.25.2 10 3.2 odd 2
26.8.b.a.25.7 yes 10 39.38 odd 2
208.8.f.c.129.7 10 12.11 even 2
208.8.f.c.129.8 10 156.155 even 2
234.8.b.c.181.2 10 13.12 even 2 inner
234.8.b.c.181.9 10 1.1 even 1 trivial
338.8.a.k.1.2 5 39.5 even 4
338.8.a.l.1.2 5 39.8 even 4