L(s) = 1 | + 2-s − 2·4-s + 2·5-s + 4·7-s − 3·8-s + 2·10-s − 2·11-s + 12·13-s + 4·14-s + 16-s + 4·17-s + 4·19-s − 4·20-s − 2·22-s − 2·23-s − 7·25-s + 12·26-s − 8·28-s − 12·29-s + 2·32-s + 4·34-s + 8·35-s + 14·37-s + 4·38-s − 6·40-s + 6·41-s + 4·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 4-s + 0.894·5-s + 1.51·7-s − 1.06·8-s + 0.632·10-s − 0.603·11-s + 3.32·13-s + 1.06·14-s + 1/4·16-s + 0.970·17-s + 0.917·19-s − 0.894·20-s − 0.426·22-s − 0.417·23-s − 7/5·25-s + 2.35·26-s − 1.51·28-s − 2.22·29-s + 0.353·32-s + 0.685·34-s + 1.35·35-s + 2.30·37-s + 0.648·38-s − 0.948·40-s + 0.937·41-s + 0.603·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184729 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.157768215\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.157768215\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.132691100390801487510301423218, −8.967878405385884590428071696254, −8.273812064959515633517042206060, −8.087245582166020587724991606495, −7.76754050236816710479025728100, −7.63012570156646872920410994359, −6.69055588989419331871445644213, −6.14738349962543185829017230632, −5.79713849414656788711930679215, −5.78704973532872455716945295972, −5.17546298305275656831704586431, −5.07257376629018513568883391594, −4.18154226755989617684829068055, −4.06884594574649080352202802084, −3.54469871346207516066358994208, −3.37666894307346969913258329260, −2.28962723072783962892520223976, −1.91855916077604607137348581883, −1.24488559625014395696513525311, −0.820476991937831851109502018246,
0.820476991937831851109502018246, 1.24488559625014395696513525311, 1.91855916077604607137348581883, 2.28962723072783962892520223976, 3.37666894307346969913258329260, 3.54469871346207516066358994208, 4.06884594574649080352202802084, 4.18154226755989617684829068055, 5.07257376629018513568883391594, 5.17546298305275656831704586431, 5.78704973532872455716945295972, 5.79713849414656788711930679215, 6.14738349962543185829017230632, 6.69055588989419331871445644213, 7.63012570156646872920410994359, 7.76754050236816710479025728100, 8.087245582166020587724991606495, 8.273812064959515633517042206060, 8.967878405385884590428071696254, 9.132691100390801487510301423218