Properties

Label 2-2088-1.1-c1-0-28
Degree $2$
Conductor $2088$
Sign $-1$
Analytic cond. $16.6727$
Root an. cond. $4.08322$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 3·11-s + 13-s − 7·17-s − 6·19-s − 5·25-s − 29-s − 6·31-s + 2·37-s + 10·41-s + 10·43-s − 47-s − 6·49-s − 6·53-s + 10·59-s − 12·61-s − 3·67-s + 14·71-s − 16·73-s − 3·77-s − 12·79-s − 16·83-s − 13·89-s − 91-s + 10·97-s − 3·101-s − 16·103-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.904·11-s + 0.277·13-s − 1.69·17-s − 1.37·19-s − 25-s − 0.185·29-s − 1.07·31-s + 0.328·37-s + 1.56·41-s + 1.52·43-s − 0.145·47-s − 6/7·49-s − 0.824·53-s + 1.30·59-s − 1.53·61-s − 0.366·67-s + 1.66·71-s − 1.87·73-s − 0.341·77-s − 1.35·79-s − 1.75·83-s − 1.37·89-s − 0.104·91-s + 1.01·97-s − 0.298·101-s − 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2088\)    =    \(2^{3} \cdot 3^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(16.6727\)
Root analytic conductor: \(4.08322\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2088,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
29 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.961564798926642365518199827035, −7.987444335389149297704049163927, −7.04396284671871403679667281477, −6.35498380067665774619185118042, −5.75391290995307700430504967677, −4.32441970583018028952972985141, −4.03281536182273214248961485688, −2.67214543045075489567581310934, −1.68572189637400302777569607414, 0, 1.68572189637400302777569607414, 2.67214543045075489567581310934, 4.03281536182273214248961485688, 4.32441970583018028952972985141, 5.75391290995307700430504967677, 6.35498380067665774619185118042, 7.04396284671871403679667281477, 7.987444335389149297704049163927, 8.961564798926642365518199827035

Graph of the $Z$-function along the critical line