Properties

Label 4-1520e2-1.1-c0e2-0-5
Degree $4$
Conductor $2310400$
Sign $1$
Analytic cond. $0.575441$
Root an. cond. $0.870964$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 9-s − 19-s + 29-s + 2·41-s + 45-s − 2·49-s + 3·59-s − 61-s − 3·71-s + 3·79-s + 89-s − 95-s + 101-s − 109-s − 121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 5-s + 9-s − 19-s + 29-s + 2·41-s + 45-s − 2·49-s + 3·59-s − 61-s − 3·71-s + 3·79-s + 89-s − 95-s + 101-s − 109-s − 121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2310400\)    =    \(2^{8} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.575441\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2310400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.490338702\)
\(L(\frac12)\) \(\approx\) \(1.490338702\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 + T + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2} \)
43$C_2^2$ \( 1 - T^{2} + T^{4} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.893156799054086941989927713626, −9.368432600161537641113979317941, −9.290195944824512957693638488847, −8.706008666461950198559937545803, −8.226735079712346508192466413331, −7.969995004651745248940009322139, −7.31351995659856368094233694782, −7.12888607126374888029364825173, −6.48627451305059621222529688275, −6.20980231256534698137159676296, −5.95129878512687378939338463437, −5.32098979218182876176465308713, −4.74209499115937212588253964221, −4.59352821367347328190114606253, −3.89503670198133601378328688253, −3.55235791243882900081794795775, −2.64063483348644297480854123480, −2.36949069645953042159712633249, −1.69876312402771364312173726435, −1.09378534532884611647703474898, 1.09378534532884611647703474898, 1.69876312402771364312173726435, 2.36949069645953042159712633249, 2.64063483348644297480854123480, 3.55235791243882900081794795775, 3.89503670198133601378328688253, 4.59352821367347328190114606253, 4.74209499115937212588253964221, 5.32098979218182876176465308713, 5.95129878512687378939338463437, 6.20980231256534698137159676296, 6.48627451305059621222529688275, 7.12888607126374888029364825173, 7.31351995659856368094233694782, 7.969995004651745248940009322139, 8.226735079712346508192466413331, 8.706008666461950198559937545803, 9.290195944824512957693638488847, 9.368432600161537641113979317941, 9.893156799054086941989927713626

Graph of the $Z$-function along the critical line