| L(s)  = 1  |         + 5-s         + 9-s                     − 19-s                     + 29-s                         + 2·41-s         + 45-s         − 2·49-s                     + 3·59-s     − 61-s                     − 3·71-s                 + 3·79-s                     + 89-s             − 95-s             + 101-s                 − 109-s                         − 121-s         − 125-s     + 127-s         + 131-s             + 137-s     + 139-s             + 145-s         + 149-s     + 151-s             + 157-s             + 163-s         + 167-s  + ⋯ | 
 
| L(s)  = 1  |         + 5-s         + 9-s                     − 19-s                     + 29-s                         + 2·41-s         + 45-s         − 2·49-s                     + 3·59-s     − 61-s                     − 3·71-s                 + 3·79-s                     + 89-s             − 95-s             + 101-s                 − 109-s                         − 121-s         − 125-s     + 127-s         + 131-s             + 137-s     + 139-s             + 145-s         + 149-s     + 151-s             + 157-s             + 163-s         + 167-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(1.490338702\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.490338702\)  | 
    
    
        
      |  \(L(1)\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $\Gal(F_p)$ | $F_p(T)$ | 
|---|
| bad | 2 |  |  \( 1 \)  | 
 | 5 | $C_2$ |  \( 1 - T + T^{2} \)  | 
 | 19 | $C_2$ |  \( 1 + T + T^{2} \)  | 
| good | 3 | $C_2^2$ |  \( 1 - T^{2} + T^{4} \)  | 
 | 7 | $C_2$ |  \( ( 1 + T^{2} )^{2} \)  | 
 | 11 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 13 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 17 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 23 | $C_2^2$ |  \( 1 - T^{2} + T^{4} \)  | 
 | 29 | $C_1$$\times$$C_2$ |  \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)  | 
 | 31 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 37 | $C_1$$\times$$C_1$ |  \( ( 1 - T )^{2}( 1 + T )^{2} \)  | 
 | 41 | $C_2$ |  \( ( 1 - T + T^{2} )^{2} \)  | 
 | 43 | $C_2^2$ |  \( 1 - T^{2} + T^{4} \)  | 
 | 47 | $C_2^2$ |  \( 1 - T^{2} + T^{4} \)  | 
 | 53 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 59 | $C_1$$\times$$C_2$ |  \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)  | 
 | 61 | $C_1$$\times$$C_2$ |  \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)  | 
 | 67 | $C_2^2$ |  \( 1 - T^{2} + T^{4} \)  | 
 | 71 | $C_1$$\times$$C_2$ |  \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)  | 
 | 73 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
 | 79 | $C_1$$\times$$C_2$ |  \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)  | 
 | 83 | $C_2$ |  \( ( 1 + T^{2} )^{2} \)  | 
 | 89 | $C_1$$\times$$C_2$ |  \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)  | 
 | 97 | $C_2$ |  \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)  | 
|  show more |  |  | 
| show less |  |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.893156799054086941989927713626, −9.368432600161537641113979317941, −9.290195944824512957693638488847, −8.706008666461950198559937545803, −8.226735079712346508192466413331, −7.969995004651745248940009322139, −7.31351995659856368094233694782, −7.12888607126374888029364825173, −6.48627451305059621222529688275, −6.20980231256534698137159676296, −5.95129878512687378939338463437, −5.32098979218182876176465308713, −4.74209499115937212588253964221, −4.59352821367347328190114606253, −3.89503670198133601378328688253, −3.55235791243882900081794795775, −2.64063483348644297480854123480, −2.36949069645953042159712633249, −1.69876312402771364312173726435, −1.09378534532884611647703474898, 
1.09378534532884611647703474898, 1.69876312402771364312173726435, 2.36949069645953042159712633249, 2.64063483348644297480854123480, 3.55235791243882900081794795775, 3.89503670198133601378328688253, 4.59352821367347328190114606253, 4.74209499115937212588253964221, 5.32098979218182876176465308713, 5.95129878512687378939338463437, 6.20980231256534698137159676296, 6.48627451305059621222529688275, 7.12888607126374888029364825173, 7.31351995659856368094233694782, 7.969995004651745248940009322139, 8.226735079712346508192466413331, 8.706008666461950198559937545803, 9.290195944824512957693638488847, 9.368432600161537641113979317941, 9.893156799054086941989927713626