Properties

Label 1520.1.bu.a
Level $1520$
Weight $1$
Character orbit 1520.bu
Analytic conductor $0.759$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
RM discriminant 5
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,1,Mod(159,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.159"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1520.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.4170272000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{5} - \zeta_{6}^{2} q^{9} + (\zeta_{6}^{2} + \zeta_{6}) q^{11} + \zeta_{6}^{2} q^{19} + \zeta_{6}^{2} q^{25} - \zeta_{6}^{2} q^{29} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{31} + 2 \zeta_{6} q^{41} + \cdots + (\zeta_{6} + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + q^{9} - q^{19} - q^{25} + q^{29} + 2 q^{41} + 2 q^{45} - 2 q^{49} - 3 q^{55} + 3 q^{59} - q^{61} - 3 q^{71} + 3 q^{79} - q^{81} + q^{89} - 2 q^{95} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(\zeta_{6}^{2}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
159.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 0.500000 + 0.866025i 0 0 0 0.500000 0.866025i 0
239.1 0 0 0 0.500000 0.866025i 0 0 0 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by \(\Q(\sqrt{5}) \)
76.g odd 6 1 inner
380.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.1.bu.a 2
4.b odd 2 1 1520.1.bu.b yes 2
5.b even 2 1 RM 1520.1.bu.a 2
19.c even 3 1 1520.1.bu.b yes 2
20.d odd 2 1 1520.1.bu.b yes 2
76.g odd 6 1 inner 1520.1.bu.a 2
95.i even 6 1 1520.1.bu.b yes 2
380.p odd 6 1 inner 1520.1.bu.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1520.1.bu.a 2 1.a even 1 1 trivial
1520.1.bu.a 2 5.b even 2 1 RM
1520.1.bu.a 2 76.g odd 6 1 inner
1520.1.bu.a 2 380.p odd 6 1 inner
1520.1.bu.b yes 2 4.b odd 2 1
1520.1.bu.b yes 2 19.c even 3 1
1520.1.bu.b yes 2 20.d odd 2 1
1520.1.bu.b yes 2 95.i even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{59}^{2} - 3T_{59} + 3 \) acting on \(S_{1}^{\mathrm{new}}(1520, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} + 3 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$61$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less