Properties

Label 2-1512-1.1-c1-0-12
Degree $2$
Conductor $1512$
Sign $1$
Analytic cond. $12.0733$
Root an. cond. $3.47467$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 7-s + 4·11-s − 13-s + 3·17-s + 2·19-s − 3·23-s + 11·25-s − 9·29-s − 31-s − 4·35-s + 10·37-s + 10·41-s − 43-s − 10·47-s + 49-s + 9·53-s + 16·55-s − 3·59-s − 6·61-s − 4·65-s − 13·67-s − 13·71-s + 10·73-s − 4·77-s + 10·79-s + 4·83-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.377·7-s + 1.20·11-s − 0.277·13-s + 0.727·17-s + 0.458·19-s − 0.625·23-s + 11/5·25-s − 1.67·29-s − 0.179·31-s − 0.676·35-s + 1.64·37-s + 1.56·41-s − 0.152·43-s − 1.45·47-s + 1/7·49-s + 1.23·53-s + 2.15·55-s − 0.390·59-s − 0.768·61-s − 0.496·65-s − 1.58·67-s − 1.54·71-s + 1.17·73-s − 0.455·77-s + 1.12·79-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1512\)    =    \(2^{3} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(12.0733\)
Root analytic conductor: \(3.47467\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1512,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.463254201\)
\(L(\frac12)\) \(\approx\) \(2.463254201\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.442320445686517988686722905025, −9.124477874703552024915151089158, −7.81195631666782754127091281103, −6.89975695051450867215286186940, −5.97765521850791274570773320089, −5.71783228302031072107350458669, −4.48329735587609522917856923409, −3.32204369752315772488428657976, −2.21234938564256767010135396120, −1.25282736319694142732812877021, 1.25282736319694142732812877021, 2.21234938564256767010135396120, 3.32204369752315772488428657976, 4.48329735587609522917856923409, 5.71783228302031072107350458669, 5.97765521850791274570773320089, 6.89975695051450867215286186940, 7.81195631666782754127091281103, 9.124477874703552024915151089158, 9.442320445686517988686722905025

Graph of the $Z$-function along the critical line