L(s) = 1 | + 2-s + 1.56·3-s − 4-s + (1.78 − 1.35i)5-s + 1.56·6-s + 3.46i·7-s − 3·8-s − 0.561·9-s + (1.78 − 1.35i)10-s − 6.16i·11-s − 1.56·12-s + 2.70i·13-s + 3.46i·14-s + (2.78 − 2.11i)15-s − 16-s − 2·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.901·3-s − 0.5·4-s + (0.796 − 0.604i)5-s + 0.637·6-s + 1.30i·7-s − 1.06·8-s − 0.187·9-s + (0.563 − 0.427i)10-s − 1.85i·11-s − 0.450·12-s + 0.750i·13-s + 0.925i·14-s + (0.717 − 0.545i)15-s − 0.250·16-s − 0.485·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0492i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0492i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75806 - 0.0433100i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75806 - 0.0433100i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.78 + 1.35i)T \) |
| 29 | \( 1 + (4.12 + 3.46i)T \) |
good | 2 | \( 1 - T + 2T^{2} \) |
| 3 | \( 1 - 1.56T + 3T^{2} \) |
| 7 | \( 1 - 3.46iT - 7T^{2} \) |
| 11 | \( 1 + 6.16iT - 11T^{2} \) |
| 13 | \( 1 - 2.70iT - 13T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 - 3.46iT - 19T^{2} \) |
| 23 | \( 1 - 3.46iT - 23T^{2} \) |
| 31 | \( 1 - 0.759iT - 31T^{2} \) |
| 37 | \( 1 + 1.12T + 37T^{2} \) |
| 41 | \( 1 + 5.40iT - 41T^{2} \) |
| 43 | \( 1 - 9.56T + 43T^{2} \) |
| 47 | \( 1 - 0.684T + 47T^{2} \) |
| 53 | \( 1 + 2.70iT - 53T^{2} \) |
| 59 | \( 1 - 7.12T + 59T^{2} \) |
| 61 | \( 1 - 12.3iT - 61T^{2} \) |
| 67 | \( 1 - 1.94iT - 67T^{2} \) |
| 71 | \( 1 - 14.2T + 71T^{2} \) |
| 73 | \( 1 - 1.12T + 73T^{2} \) |
| 79 | \( 1 + 7.68iT - 79T^{2} \) |
| 83 | \( 1 - 10.3iT - 83T^{2} \) |
| 89 | \( 1 + 5.40iT - 89T^{2} \) |
| 97 | \( 1 + 8.24T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.43889011164588289232789730080, −12.35153613720270175233959531915, −11.37213743269008301001812661282, −9.501735370232943818380554372661, −8.864759628251849098009506582360, −8.374560619853472157507830979116, −5.93600880673022359914214235589, −5.53467189363769808939408089058, −3.77798468214998008915571869237, −2.46376395633078951884282749189,
2.52846762786872877591541127261, 3.88331016351495229100794981424, 5.06138034405544140203796528198, 6.65864231834549312178151051258, 7.69366963351013351665521093146, 9.155103672950530905846552952936, 9.895512590086166173701038447378, 10.93418588853145970305628468137, 12.66577507342342333859243770239, 13.26535324954225000644954924716