Properties

Label 8-1425e4-1.1-c1e4-0-4
Degree $8$
Conductor $4.123\times 10^{12}$
Sign $1$
Analytic cond. $16763.6$
Root an. cond. $3.37323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·4-s − 2·9-s − 16·11-s + 12·16-s + 4·19-s − 12·29-s − 24·31-s − 10·36-s − 20·41-s − 80·44-s + 18·49-s + 32·59-s − 4·61-s + 15·64-s − 8·71-s + 20·76-s + 36·79-s + 3·81-s + 4·89-s + 32·99-s − 12·101-s + 4·109-s − 60·116-s + 116·121-s − 120·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 5/2·4-s − 2/3·9-s − 4.82·11-s + 3·16-s + 0.917·19-s − 2.22·29-s − 4.31·31-s − 5/3·36-s − 3.12·41-s − 12.0·44-s + 18/7·49-s + 4.16·59-s − 0.512·61-s + 15/8·64-s − 0.949·71-s + 2.29·76-s + 4.05·79-s + 1/3·81-s + 0.423·89-s + 3.21·99-s − 1.19·101-s + 0.383·109-s − 5.57·116-s + 10.5·121-s − 10.7·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(16763.6\)
Root analytic conductor: \(3.37323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{8} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.313262471\)
\(L(\frac12)\) \(\approx\) \(2.313262471\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
19$C_1$ \( ( 1 - T )^{4} \)
good2$D_4\times C_2$ \( 1 - 5 T^{2} + 13 T^{4} - 5 p^{2} T^{6} + p^{4} T^{8} \) 4.2.a_af_a_n
7$C_2^2$ \( ( 1 - 9 T^{2} + p^{2} T^{4} )^{2} \) 4.7.a_as_a_gx
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \) 4.11.q_fk_bee_epa
13$D_4\times C_2$ \( 1 - 4 T^{2} + 22 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \) 4.13.a_ae_a_w
17$D_4\times C_2$ \( 1 - 56 T^{2} + 1342 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \) 4.17.a_ace_a_bzq
23$D_4\times C_2$ \( 1 - 80 T^{2} + 2638 T^{4} - 80 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_adc_a_dxm
29$D_{4}$ \( ( 1 + 6 T + 47 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.m_fa_bjc_ivz
31$D_{4}$ \( ( 1 + 12 T + 78 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.y_lo_dwq_zbi
37$D_4\times C_2$ \( 1 - 88 T^{2} + 4174 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \) 4.37.a_adk_a_geo
41$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \) 4.41.u_mc_ejw_bibb
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \) 4.43.a_afk_a_mss
47$D_4\times C_2$ \( 1 - 116 T^{2} + 6502 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \) 4.47.a_aem_a_jqc
53$C_2^2$ \( ( 1 - 81 T^{2} + p^{2} T^{4} )^{2} \) 4.53.a_agg_a_sal
59$D_{4}$ \( ( 1 - 16 T + 137 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{2} \) 4.59.abg_uk_ajhg_detn
61$D_{4}$ \( ( 1 + 2 T + 43 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.e_dm_qa_omd
67$D_4\times C_2$ \( 1 - 100 T^{2} + 10198 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \) 4.67.a_adw_a_pcg
71$D_{4}$ \( ( 1 + 4 T + 21 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.71.i_cg_bci_syd
73$D_4\times C_2$ \( 1 - 250 T^{2} + 26203 T^{4} - 250 p^{2} T^{6} + p^{4} T^{8} \) 4.73.a_ajq_a_bmtv
79$D_{4}$ \( ( 1 - 18 T + 194 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \) 4.79.abk_bbk_aooa_ftwo
83$D_4\times C_2$ \( 1 - 164 T^{2} + 19222 T^{4} - 164 p^{2} T^{6} + p^{4} T^{8} \) 4.83.a_agi_a_bcli
89$D_{4}$ \( ( 1 - 2 T + 99 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.89.ae_hu_abcy_bmzr
97$D_4\times C_2$ \( 1 - 248 T^{2} + 29694 T^{4} - 248 p^{2} T^{6} + p^{4} T^{8} \) 4.97.a_ajo_a_bryc
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.86651164417588873683717278384, −6.75607299530934056354079478074, −6.62694170130509033553134261255, −5.88420346710924251514826918127, −5.74832453796289410688024100113, −5.65670472493239329103341032846, −5.61509771488877472224313916475, −5.29152918455228038983265075880, −5.26532051184216963481459456202, −5.21324918922325643592157226714, −4.61311350784467770169161754741, −4.51454906045621808413549782053, −3.82045091169646273098333367898, −3.67232117945070526315595066969, −3.46772875231093882600242374618, −3.20519613158112948527303564123, −3.10369145586348187922038542723, −2.66696231278990812457603910566, −2.38200944548796501452422769612, −2.18742098784607666408074281651, −2.14578158825900728380585635354, −1.86413328042835971710134406324, −1.59038933078767992311029568140, −0.52101797173706123406503859616, −0.39610447143725474632307808322, 0.39610447143725474632307808322, 0.52101797173706123406503859616, 1.59038933078767992311029568140, 1.86413328042835971710134406324, 2.14578158825900728380585635354, 2.18742098784607666408074281651, 2.38200944548796501452422769612, 2.66696231278990812457603910566, 3.10369145586348187922038542723, 3.20519613158112948527303564123, 3.46772875231093882600242374618, 3.67232117945070526315595066969, 3.82045091169646273098333367898, 4.51454906045621808413549782053, 4.61311350784467770169161754741, 5.21324918922325643592157226714, 5.26532051184216963481459456202, 5.29152918455228038983265075880, 5.61509771488877472224313916475, 5.65670472493239329103341032846, 5.74832453796289410688024100113, 5.88420346710924251514826918127, 6.62694170130509033553134261255, 6.75607299530934056354079478074, 6.86651164417588873683717278384

Graph of the $Z$-function along the critical line