| L(s) = 1 | + 3-s + 5·7-s + 3·9-s − 2·11-s + 4·17-s + 2·19-s + 5·21-s + 23-s + 8·27-s + 18·29-s − 4·31-s − 2·33-s + 4·37-s + 2·41-s − 18·43-s + 18·49-s + 4·51-s − 10·53-s + 2·57-s + 10·59-s − 9·61-s + 15·63-s + 5·67-s + 69-s + 28·71-s + 12·73-s − 10·77-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1.88·7-s + 9-s − 0.603·11-s + 0.970·17-s + 0.458·19-s + 1.09·21-s + 0.208·23-s + 1.53·27-s + 3.34·29-s − 0.718·31-s − 0.348·33-s + 0.657·37-s + 0.312·41-s − 2.74·43-s + 18/7·49-s + 0.560·51-s − 1.37·53-s + 0.264·57-s + 1.30·59-s − 1.15·61-s + 1.88·63-s + 0.610·67-s + 0.120·69-s + 3.32·71-s + 1.40·73-s − 1.13·77-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.767392848\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.767392848\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.652592586863270284937053401834, −9.602096546989072272313445434362, −8.590147594128129468219724229426, −8.454955017668562899855881730591, −8.316662137544405238704271389936, −7.88011769431113586635856670531, −7.29606090114691202928113893854, −7.22532539764096931725229853673, −6.44146316349184135358619177274, −6.24806869283686436469761587881, −5.33528887498942377122718255139, −5.01188586371534652107990766585, −4.76538982303696706437450423522, −4.47710756627370385212212925778, −3.58783644984351974046766465919, −3.31257159205927625510424581959, −2.52196403544191999001207518424, −2.17357505693376434966615532216, −1.19560545046866331209601796830, −1.11703388513479410951221812456,
1.11703388513479410951221812456, 1.19560545046866331209601796830, 2.17357505693376434966615532216, 2.52196403544191999001207518424, 3.31257159205927625510424581959, 3.58783644984351974046766465919, 4.47710756627370385212212925778, 4.76538982303696706437450423522, 5.01188586371534652107990766585, 5.33528887498942377122718255139, 6.24806869283686436469761587881, 6.44146316349184135358619177274, 7.22532539764096931725229853673, 7.29606090114691202928113893854, 7.88011769431113586635856670531, 8.316662137544405238704271389936, 8.454955017668562899855881730591, 8.590147594128129468219724229426, 9.602096546989072272313445434362, 9.652592586863270284937053401834