L(s) = 1 | − 2·2-s + 3-s + 2·4-s − 2·6-s + 9-s − 2·11-s + 2·12-s − 4·16-s + 2·17-s − 2·18-s + 4·22-s − 4·25-s + 27-s + 8·32-s − 2·33-s − 4·34-s + 2·36-s − 8·43-s − 4·44-s − 4·48-s + 2·49-s + 8·50-s + 2·51-s − 2·54-s − 8·59-s − 8·64-s + 4·66-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.577·3-s + 4-s − 0.816·6-s + 1/3·9-s − 0.603·11-s + 0.577·12-s − 16-s + 0.485·17-s − 0.471·18-s + 0.852·22-s − 4/5·25-s + 0.192·27-s + 1.41·32-s − 0.348·33-s − 0.685·34-s + 1/3·36-s − 1.21·43-s − 0.603·44-s − 0.577·48-s + 2/7·49-s + 1.13·50-s + 0.280·51-s − 0.272·54-s − 1.04·59-s − 64-s + 0.492·66-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 623808 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.107212734054336291985733923038, −7.910050612817412619434815276765, −7.42663021842369398843361676359, −7.15438881941100593242563888383, −6.47538037687462323460881315962, −6.07454615634188289333576083777, −5.44159911512899854367102901077, −4.81290415692609065796084392684, −4.43879684292035116742208075197, −3.63140428142550758563754653634, −3.17211385217539487216733044205, −2.40967405882884571062551300590, −1.88464287650654210018176627605, −1.14238250962966379214471971375, 0,
1.14238250962966379214471971375, 1.88464287650654210018176627605, 2.40967405882884571062551300590, 3.17211385217539487216733044205, 3.63140428142550758563754653634, 4.43879684292035116742208075197, 4.81290415692609065796084392684, 5.44159911512899854367102901077, 6.07454615634188289333576083777, 6.47538037687462323460881315962, 7.15438881941100593242563888383, 7.42663021842369398843361676359, 7.910050612817412619434815276765, 8.107212734054336291985733923038