| L(s) = 1 | + 2-s + 4-s + 8-s − 4·9-s − 8·13-s + 16-s − 6·17-s − 4·18-s − 4·25-s − 8·26-s − 3·29-s + 32-s − 6·34-s − 4·36-s + 6·37-s − 41-s + 8·49-s − 4·50-s − 8·52-s − 11·53-s − 3·58-s − 9·61-s + 64-s − 6·68-s − 4·72-s + 8·73-s + 6·74-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 4/3·9-s − 2.21·13-s + 1/4·16-s − 1.45·17-s − 0.942·18-s − 4/5·25-s − 1.56·26-s − 0.557·29-s + 0.176·32-s − 1.02·34-s − 2/3·36-s + 0.986·37-s − 0.156·41-s + 8/7·49-s − 0.565·50-s − 1.10·52-s − 1.51·53-s − 0.393·58-s − 1.15·61-s + 1/8·64-s − 0.727·68-s − 0.471·72-s + 0.936·73-s + 0.697·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.384261794738663379001853040207, −9.063086912699619163012346142942, −8.417820870750715009427410287493, −7.72771612056908536492348139244, −7.50632466772525982110189309162, −6.82463666891408075052796590312, −6.22785631805514179170740754003, −5.81162100815207357523321280126, −5.07886527573010417046111449722, −4.74654933485478492084320673014, −4.09479150991100469310891154811, −3.22362495277057918546523697497, −2.51198349974349672015872256061, −2.11878453942050584428041650988, 0,
2.11878453942050584428041650988, 2.51198349974349672015872256061, 3.22362495277057918546523697497, 4.09479150991100469310891154811, 4.74654933485478492084320673014, 5.07886527573010417046111449722, 5.81162100815207357523321280126, 6.22785631805514179170740754003, 6.82463666891408075052796590312, 7.50632466772525982110189309162, 7.72771612056908536492348139244, 8.417820870750715009427410287493, 9.063086912699619163012346142942, 9.384261794738663379001853040207