L(s) = 1 | + 3-s − 4-s + 5-s + 9-s − 12-s + 15-s + 16-s − 20-s − 2·23-s − 7·25-s + 27-s − 3·31-s − 36-s − 2·37-s + 45-s − 11·47-s + 48-s − 6·49-s − 6·53-s + 3·59-s − 60-s − 64-s − 3·67-s − 2·69-s + 8·71-s − 7·75-s + 80-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1/2·4-s + 0.447·5-s + 1/3·9-s − 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.223·20-s − 0.417·23-s − 7/5·25-s + 0.192·27-s − 0.538·31-s − 1/6·36-s − 0.328·37-s + 0.149·45-s − 1.60·47-s + 0.144·48-s − 6/7·49-s − 0.824·53-s + 0.390·59-s − 0.129·60-s − 1/8·64-s − 0.366·67-s − 0.240·69-s + 0.949·71-s − 0.808·75-s + 0.111·80-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.765499553\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.765499553\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.47682704379833297502951064014, −6.90483643866270621916879904368, −6.44517846909703847696542809136, −6.25445919260678435610900941150, −5.62593486572395552461607446144, −5.26820129412220669873510783345, −4.89688043453987299664035597346, −4.36787297633981588396478239727, −3.84354968595224400074033165544, −3.60391410576657566822697286389, −2.99632285334668156286003677811, −2.49237125251684844700190709711, −1.73646318917312070352661479131, −1.60462027878244259210569888129, −0.43564453505219936092566746195,
0.43564453505219936092566746195, 1.60462027878244259210569888129, 1.73646318917312070352661479131, 2.49237125251684844700190709711, 2.99632285334668156286003677811, 3.60391410576657566822697286389, 3.84354968595224400074033165544, 4.36787297633981588396478239727, 4.89688043453987299664035597346, 5.26820129412220669873510783345, 5.62593486572395552461607446144, 6.25445919260678435610900941150, 6.44517846909703847696542809136, 6.90483643866270621916879904368, 7.47682704379833297502951064014