Properties

Label 2-990-1.1-c1-0-10
Degree $2$
Conductor $990$
Sign $-1$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s + 10-s − 11-s + 16-s − 2·17-s + 2·19-s − 20-s + 22-s − 6·23-s + 25-s − 2·29-s − 32-s + 2·34-s − 6·37-s − 2·38-s + 40-s − 2·41-s − 2·43-s − 44-s + 6·46-s + 2·47-s − 7·49-s − 50-s − 2·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s + 0.316·10-s − 0.301·11-s + 1/4·16-s − 0.485·17-s + 0.458·19-s − 0.223·20-s + 0.213·22-s − 1.25·23-s + 1/5·25-s − 0.371·29-s − 0.176·32-s + 0.342·34-s − 0.986·37-s − 0.324·38-s + 0.158·40-s − 0.312·41-s − 0.304·43-s − 0.150·44-s + 0.884·46-s + 0.291·47-s − 49-s − 0.141·50-s − 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.585061788865674397535829002795, −8.681551793214488744099226686983, −7.980074178056792123593772000541, −7.22701879062173689410571032674, −6.32391276808398118475394591840, −5.29499086428259716447525409361, −4.12386584858564076185898674350, −3.01181279495610934783547817167, −1.72432388001961117188035940243, 0, 1.72432388001961117188035940243, 3.01181279495610934783547817167, 4.12386584858564076185898674350, 5.29499086428259716447525409361, 6.32391276808398118475394591840, 7.22701879062173689410571032674, 7.980074178056792123593772000541, 8.681551793214488744099226686983, 9.585061788865674397535829002795

Graph of the $Z$-function along the critical line