Properties

Label 2-312e2-1.1-c1-0-57
Degree $2$
Conductor $97344$
Sign $-1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s + 4·11-s − 5·17-s − 6·19-s − 6·23-s + 4·25-s − 4·29-s + 3·35-s + 3·37-s − 12·41-s − 3·43-s − 7·47-s − 6·49-s − 2·53-s − 12·55-s − 2·59-s + 12·61-s − 4·67-s + 11·71-s + 6·73-s − 4·77-s + 6·79-s + 10·83-s + 15·85-s − 6·89-s + 18·95-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s + 1.20·11-s − 1.21·17-s − 1.37·19-s − 1.25·23-s + 4/5·25-s − 0.742·29-s + 0.507·35-s + 0.493·37-s − 1.87·41-s − 0.457·43-s − 1.02·47-s − 6/7·49-s − 0.274·53-s − 1.61·55-s − 0.260·59-s + 1.53·61-s − 0.488·67-s + 1.30·71-s + 0.702·73-s − 0.455·77-s + 0.675·79-s + 1.09·83-s + 1.62·85-s − 0.635·89-s + 1.84·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 11 T + p T^{2} \) 1.71.al
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01846781945079, −13.53208905001279, −12.93983371789555, −12.52964018350456, −12.04402429690705, −11.45224939639886, −11.30694627245268, −10.76022040645729, −9.901159443905931, −9.735245564872691, −8.826666451263468, −8.577915045895889, −8.115888360471083, −7.514435483412981, −6.887713439339759, −6.371365423685144, −6.253440135540953, −5.148586169511686, −4.581254645556153, −4.092368303740146, −3.649972375822435, −3.241105754206382, −2.087029128541003, −1.835830911649488, −0.6026655626248948, 0, 0.6026655626248948, 1.835830911649488, 2.087029128541003, 3.241105754206382, 3.649972375822435, 4.092368303740146, 4.581254645556153, 5.148586169511686, 6.253440135540953, 6.371365423685144, 6.887713439339759, 7.514435483412981, 8.115888360471083, 8.577915045895889, 8.826666451263468, 9.735245564872691, 9.901159443905931, 10.76022040645729, 11.30694627245268, 11.45224939639886, 12.04402429690705, 12.52964018350456, 12.93983371789555, 13.53208905001279, 14.01846781945079

Graph of the $Z$-function along the critical line