Properties

Label 2-312e2-1.1-c1-0-47
Degree $2$
Conductor $97344$
Sign $-1$
Analytic cond. $777.295$
Root an. cond. $27.8800$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 2·11-s − 2·17-s − 8·19-s + 4·23-s + 11·25-s − 6·29-s − 4·31-s + 6·37-s − 12·41-s + 4·43-s + 6·47-s − 7·49-s − 2·53-s + 8·55-s − 14·59-s − 10·61-s + 4·67-s − 2·71-s + 2·73-s + 8·79-s + 14·83-s + 8·85-s + 32·95-s + 10·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.603·11-s − 0.485·17-s − 1.83·19-s + 0.834·23-s + 11/5·25-s − 1.11·29-s − 0.718·31-s + 0.986·37-s − 1.87·41-s + 0.609·43-s + 0.875·47-s − 49-s − 0.274·53-s + 1.07·55-s − 1.82·59-s − 1.28·61-s + 0.488·67-s − 0.237·71-s + 0.234·73-s + 0.900·79-s + 1.53·83-s + 0.867·85-s + 3.28·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 97344 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(97344\)    =    \(2^{6} \cdot 3^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(777.295\)
Root analytic conductor: \(27.8800\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 97344,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.09763516764436, −13.34936378089457, −12.95484704796313, −12.55491688106419, −12.13711684118054, −11.47160868941173, −11.07077309296641, −10.75784498149749, −10.34971371112838, −9.360464833326296, −9.009108737107511, −8.448263422968824, −8.008153672154610, −7.520943511576922, −7.153307896266051, −6.440130782675676, −6.033866358680110, −5.003521974935740, −4.751932508103827, −4.155673133825367, −3.593156430530488, −3.134279150308727, −2.349141071390988, −1.663893824747726, −0.5539496694006162, 0, 0.5539496694006162, 1.663893824747726, 2.349141071390988, 3.134279150308727, 3.593156430530488, 4.155673133825367, 4.751932508103827, 5.003521974935740, 6.033866358680110, 6.440130782675676, 7.153307896266051, 7.520943511576922, 8.008153672154610, 8.448263422968824, 9.009108737107511, 9.360464833326296, 10.34971371112838, 10.75784498149749, 11.07077309296641, 11.47160868941173, 12.13711684118054, 12.55491688106419, 12.95484704796313, 13.34936378089457, 14.09763516764436

Graph of the $Z$-function along the critical line