Properties

Label 2-96720-1.1-c1-0-70
Degree $2$
Conductor $96720$
Sign $-1$
Analytic cond. $772.313$
Root an. cond. $27.7905$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 7-s + 9-s + 5·11-s + 13-s − 15-s − 4·17-s + 3·19-s + 21-s + 3·23-s + 25-s − 27-s + 31-s − 5·33-s − 35-s − 8·37-s − 39-s − 8·41-s − 7·43-s + 45-s + 2·47-s − 6·49-s + 4·51-s − 53-s + 5·55-s − 3·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.50·11-s + 0.277·13-s − 0.258·15-s − 0.970·17-s + 0.688·19-s + 0.218·21-s + 0.625·23-s + 1/5·25-s − 0.192·27-s + 0.179·31-s − 0.870·33-s − 0.169·35-s − 1.31·37-s − 0.160·39-s − 1.24·41-s − 1.06·43-s + 0.149·45-s + 0.291·47-s − 6/7·49-s + 0.560·51-s − 0.137·53-s + 0.674·55-s − 0.397·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96720\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 31\)
Sign: $-1$
Analytic conductor: \(772.313\)
Root analytic conductor: \(27.7905\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 96720,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 - T \)
31 \( 1 - T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94715089843126, −13.48478803419590, −13.19519928932089, −12.35960121679720, −12.18236573983719, −11.50378650769133, −11.20766589981293, −10.63748226311347, −10.01779685550544, −9.640033539742772, −9.065115739711559, −8.729729601261007, −8.115875335182025, −7.202630034141023, −6.870436844473809, −6.407628483713290, −6.069628161711604, −5.227160344789424, −4.891836551462530, −4.213351705685409, −3.487165450525752, −3.181922698338470, −2.098411142724733, −1.584182732761527, −0.9313191743600341, 0, 0.9313191743600341, 1.584182732761527, 2.098411142724733, 3.181922698338470, 3.487165450525752, 4.213351705685409, 4.891836551462530, 5.227160344789424, 6.069628161711604, 6.407628483713290, 6.870436844473809, 7.202630034141023, 8.115875335182025, 8.729729601261007, 9.065115739711559, 9.640033539742772, 10.01779685550544, 10.63748226311347, 11.20766589981293, 11.50378650769133, 12.18236573983719, 12.35960121679720, 13.19519928932089, 13.48478803419590, 13.94715089843126

Graph of the $Z$-function along the critical line