Properties

Label 2-96558-1.1-c1-0-77
Degree $2$
Conductor $96558$
Sign $-1$
Analytic cond. $771.019$
Root an. cond. $27.7672$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 12-s + 7·13-s + 14-s − 15-s + 16-s + 3·17-s + 18-s − 19-s − 20-s + 21-s + 24-s − 4·25-s + 7·26-s + 27-s + 28-s − 9·29-s − 30-s − 8·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 1.94·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.727·17-s + 0.235·18-s − 0.229·19-s − 0.223·20-s + 0.218·21-s + 0.204·24-s − 4/5·25-s + 1.37·26-s + 0.192·27-s + 0.188·28-s − 1.67·29-s − 0.182·30-s − 1.43·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96558\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(771.019\)
Root analytic conductor: \(27.7672\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 96558,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20206559882954, −13.47636018911588, −13.03363191563325, −12.88191382398126, −12.05036939677170, −11.60638334927128, −11.11391598345370, −10.82903355927828, −10.16546784311901, −9.564869553538872, −8.831498768521996, −8.652926436894068, −7.884566436614153, −7.539901073343734, −7.104533653557429, −6.203009348587994, −5.910535645422511, −5.350670318631649, −4.642801773840117, −3.968302936483791, −3.516832652281282, −3.384097064785173, −2.302038771225521, −1.690809127763667, −1.211437166964166, 0, 1.211437166964166, 1.690809127763667, 2.302038771225521, 3.384097064785173, 3.516832652281282, 3.968302936483791, 4.642801773840117, 5.350670318631649, 5.910535645422511, 6.203009348587994, 7.104533653557429, 7.539901073343734, 7.884566436614153, 8.652926436894068, 8.831498768521996, 9.564869553538872, 10.16546784311901, 10.82903355927828, 11.11391598345370, 11.60638334927128, 12.05036939677170, 12.88191382398126, 13.03363191563325, 13.47636018911588, 14.20206559882954

Graph of the $Z$-function along the critical line