Properties

Label 2-91728-1.1-c1-0-56
Degree $2$
Conductor $91728$
Sign $1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 3·11-s + 13-s + 7·17-s − 19-s + 23-s + 4·25-s + 2·29-s + 9·31-s − 3·37-s + 10·41-s − 4·43-s − 3·47-s + 53-s + 9·55-s + 11·59-s + 61-s − 3·65-s + 7·67-s + 8·71-s + 7·73-s + 11·79-s + 4·83-s − 21·85-s + 89-s + 3·95-s − 2·97-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.904·11-s + 0.277·13-s + 1.69·17-s − 0.229·19-s + 0.208·23-s + 4/5·25-s + 0.371·29-s + 1.61·31-s − 0.493·37-s + 1.56·41-s − 0.609·43-s − 0.437·47-s + 0.137·53-s + 1.21·55-s + 1.43·59-s + 0.128·61-s − 0.372·65-s + 0.855·67-s + 0.949·71-s + 0.819·73-s + 1.23·79-s + 0.439·83-s − 2.27·85-s + 0.105·89-s + 0.307·95-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.138197251\)
\(L(\frac12)\) \(\approx\) \(2.138197251\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94529852298001, −13.28704582440401, −12.74290177470282, −12.33982155537118, −11.90572560013058, −11.43442800721845, −10.95864758121352, −10.38567189655935, −9.954706420298432, −9.467002127337950, −8.519366612202992, −8.321265890178877, −7.808449541905720, −7.457085089490773, −6.819609993450875, −6.190147443038449, −5.580777510024827, −4.937775767471102, −4.570936712694451, −3.677955428446089, −3.481121845625436, −2.757090919176756, −2.092653800842763, −0.9256587508494869, −0.6126877421932328, 0.6126877421932328, 0.9256587508494869, 2.092653800842763, 2.757090919176756, 3.481121845625436, 3.677955428446089, 4.570936712694451, 4.937775767471102, 5.580777510024827, 6.190147443038449, 6.819609993450875, 7.457085089490773, 7.808449541905720, 8.321265890178877, 8.519366612202992, 9.467002127337950, 9.954706420298432, 10.38567189655935, 10.95864758121352, 11.43442800721845, 11.90572560013058, 12.33982155537118, 12.74290177470282, 13.28704582440401, 13.94529852298001

Graph of the $Z$-function along the critical line