L(s) = 1 | − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s − 2·9-s − 10-s − 3·11-s + 12-s + 13-s − 14-s + 15-s + 16-s + 6·17-s + 2·18-s + 2·19-s + 20-s + 21-s + 3·22-s + 9·23-s − 24-s + 25-s − 26-s − 5·27-s + 28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.904·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.471·18-s + 0.458·19-s + 0.223·20-s + 0.218·21-s + 0.639·22-s + 1.87·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.962·27-s + 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.522766631\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.522766631\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 + T \) | |
| 5 | \( 1 - T \) | |
| 7 | \( 1 - T \) | |
| 13 | \( 1 - T \) | |
good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab |
| 11 | \( 1 + 3 T + p T^{2} \) | 1.11.d |
| 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag |
| 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac |
| 23 | \( 1 - 9 T + p T^{2} \) | 1.23.aj |
| 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag |
| 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af |
| 37 | \( 1 + 7 T + p T^{2} \) | 1.37.h |
| 41 | \( 1 - 9 T + p T^{2} \) | 1.41.aj |
| 43 | \( 1 + 10 T + p T^{2} \) | 1.43.k |
| 47 | \( 1 - 3 T + p T^{2} \) | 1.47.ad |
| 53 | \( 1 + p T^{2} \) | 1.53.a |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 + T + p T^{2} \) | 1.61.b |
| 67 | \( 1 + 13 T + p T^{2} \) | 1.67.n |
| 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m |
| 73 | \( 1 - 11 T + p T^{2} \) | 1.73.al |
| 79 | \( 1 - 17 T + p T^{2} \) | 1.79.ar |
| 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g |
| 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g |
| 97 | \( 1 + 19 T + p T^{2} \) | 1.97.t |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05061806839180781790259502570, −9.159435685971581294858371505100, −8.435903337687293375328348775630, −7.83159187546835742398350363171, −6.91264864206484904347481750841, −5.72545232223589285768797652484, −5.02015084058279490804217064544, −3.26997525445913921113225440284, −2.59922101654110898041192624224, −1.13387616206544440815250853071,
1.13387616206544440815250853071, 2.59922101654110898041192624224, 3.26997525445913921113225440284, 5.02015084058279490804217064544, 5.72545232223589285768797652484, 6.91264864206484904347481750841, 7.83159187546835742398350363171, 8.435903337687293375328348775630, 9.159435685971581294858371505100, 10.05061806839180781790259502570