Properties

Label 2-910-1.1-c1-0-8
Degree $2$
Conductor $910$
Sign $1$
Analytic cond. $7.26638$
Root an. cond. $2.69562$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s − 2·9-s − 10-s − 3·11-s + 12-s + 13-s − 14-s + 15-s + 16-s + 6·17-s + 2·18-s + 2·19-s + 20-s + 21-s + 3·22-s + 9·23-s − 24-s + 25-s − 26-s − 5·27-s + 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.904·11-s + 0.288·12-s + 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.471·18-s + 0.458·19-s + 0.223·20-s + 0.218·21-s + 0.639·22-s + 1.87·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.962·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 910 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(910\)    =    \(2 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(7.26638\)
Root analytic conductor: \(2.69562\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 910,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.522766631\)
\(L(\frac12)\) \(\approx\) \(1.522766631\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05061806839180781790259502570, −9.159435685971581294858371505100, −8.435903337687293375328348775630, −7.83159187546835742398350363171, −6.91264864206484904347481750841, −5.72545232223589285768797652484, −5.02015084058279490804217064544, −3.26997525445913921113225440284, −2.59922101654110898041192624224, −1.13387616206544440815250853071, 1.13387616206544440815250853071, 2.59922101654110898041192624224, 3.26997525445913921113225440284, 5.02015084058279490804217064544, 5.72545232223589285768797652484, 6.91264864206484904347481750841, 7.83159187546835742398350363171, 8.435903337687293375328348775630, 9.159435685971581294858371505100, 10.05061806839180781790259502570

Graph of the $Z$-function along the critical line