Properties

Label 2-87120-1.1-c1-0-39
Degree $2$
Conductor $87120$
Sign $1$
Analytic cond. $695.656$
Root an. cond. $26.3753$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 7-s + 4·13-s − 4·19-s + 25-s − 6·29-s + 10·31-s + 35-s + 8·37-s − 3·41-s − 43-s + 9·47-s − 6·49-s + 12·53-s + 6·59-s − 11·61-s − 4·65-s + 67-s − 6·71-s − 8·73-s + 14·79-s + 12·83-s + 15·89-s − 4·91-s + 4·95-s + 8·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.377·7-s + 1.10·13-s − 0.917·19-s + 1/5·25-s − 1.11·29-s + 1.79·31-s + 0.169·35-s + 1.31·37-s − 0.468·41-s − 0.152·43-s + 1.31·47-s − 6/7·49-s + 1.64·53-s + 0.781·59-s − 1.40·61-s − 0.496·65-s + 0.122·67-s − 0.712·71-s − 0.936·73-s + 1.57·79-s + 1.31·83-s + 1.58·89-s − 0.419·91-s + 0.410·95-s + 0.812·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87120\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(695.656\)
Root analytic conductor: \(26.3753\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 87120,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.090141875\)
\(L(\frac12)\) \(\approx\) \(2.090141875\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
11 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 11 T + p T^{2} \) 1.61.l
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68691517214110, −13.42073672815546, −13.02253430403023, −12.42087837946290, −11.85249034990213, −11.51155381972911, −10.91447404624763, −10.43211021249217, −10.05982438516584, −9.241561582988994, −8.931594242327001, −8.346675502600883, −7.886859999060216, −7.344770971532666, −6.692389525896355, −6.092858860801784, −5.948439056541514, −4.954255260708684, −4.483298909157678, −3.820619607951591, −3.463980978633605, −2.652219103479825, −2.079889207081630, −1.143333206595203, −0.5177603341895235, 0.5177603341895235, 1.143333206595203, 2.079889207081630, 2.652219103479825, 3.463980978633605, 3.820619607951591, 4.483298909157678, 4.954255260708684, 5.948439056541514, 6.092858860801784, 6.692389525896355, 7.344770971532666, 7.886859999060216, 8.346675502600883, 8.931594242327001, 9.241561582988994, 10.05982438516584, 10.43211021249217, 10.91447404624763, 11.51155381972911, 11.85249034990213, 12.42087837946290, 13.02253430403023, 13.42073672815546, 13.68691517214110

Graph of the $Z$-function along the critical line