Properties

Label 2-77740-1.1-c1-0-9
Degree $2$
Conductor $77740$
Sign $1$
Analytic cond. $620.757$
Root an. cond. $24.9149$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 4·7-s − 2·9-s + 6·11-s + 15-s − 2·19-s + 4·21-s + 23-s + 25-s − 5·27-s + 9·29-s − 5·31-s + 6·33-s + 4·35-s − 2·37-s + 9·41-s − 4·43-s − 2·45-s + 3·47-s + 9·49-s − 6·53-s + 6·55-s − 2·57-s + 2·61-s − 8·63-s + 10·67-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 1.51·7-s − 2/3·9-s + 1.80·11-s + 0.258·15-s − 0.458·19-s + 0.872·21-s + 0.208·23-s + 1/5·25-s − 0.962·27-s + 1.67·29-s − 0.898·31-s + 1.04·33-s + 0.676·35-s − 0.328·37-s + 1.40·41-s − 0.609·43-s − 0.298·45-s + 0.437·47-s + 9/7·49-s − 0.824·53-s + 0.809·55-s − 0.264·57-s + 0.256·61-s − 1.00·63-s + 1.22·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 77740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(77740\)    =    \(2^{2} \cdot 5 \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(620.757\)
Root analytic conductor: \(24.9149\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 77740,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.271812680\)
\(L(\frac12)\) \(\approx\) \(5.271812680\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08715249699785, −13.84425638331457, −13.16589686802214, −12.33910830269717, −12.10301436102098, −11.48441532118436, −11.00338511369433, −10.76487123841585, −9.843890010634737, −9.348742461806489, −8.961084492802744, −8.396521440365344, −8.146879992714284, −7.468746765947192, −6.693879234326508, −6.433954467076034, −5.594313712586818, −5.207285966432891, −4.403430738342874, −4.075304911278940, −3.325246627866991, −2.602600725147542, −1.961555834899865, −1.447542211816882, −0.7520591832752914, 0.7520591832752914, 1.447542211816882, 1.961555834899865, 2.602600725147542, 3.325246627866991, 4.075304911278940, 4.403430738342874, 5.207285966432891, 5.594313712586818, 6.433954467076034, 6.693879234326508, 7.468746765947192, 8.146879992714284, 8.396521440365344, 8.961084492802744, 9.348742461806489, 9.843890010634737, 10.76487123841585, 11.00338511369433, 11.48441532118436, 12.10301436102098, 12.33910830269717, 13.16589686802214, 13.84425638331457, 14.08715249699785

Graph of the $Z$-function along the critical line