Properties

Label 2-272e2-1.1-c1-0-14
Degree $2$
Conductor $73984$
Sign $1$
Analytic cond. $590.765$
Root an. cond. $24.3056$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 6·11-s + 2·19-s − 5·25-s + 4·27-s + 12·33-s − 6·41-s − 10·43-s − 7·49-s − 4·57-s + 6·59-s − 14·67-s + 2·73-s + 10·75-s − 11·81-s + 18·83-s − 18·89-s − 10·97-s − 6·99-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 1.80·11-s + 0.458·19-s − 25-s + 0.769·27-s + 2.08·33-s − 0.937·41-s − 1.52·43-s − 49-s − 0.529·57-s + 0.781·59-s − 1.71·67-s + 0.234·73-s + 1.15·75-s − 1.22·81-s + 1.97·83-s − 1.90·89-s − 1.01·97-s − 0.603·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 73984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(73984\)    =    \(2^{8} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(590.765\)
Root analytic conductor: \(24.3056\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 73984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73429153885774, −13.84520359535265, −13.52422733402692, −13.09086806301249, −12.48641679259496, −12.05391976594045, −11.48494403939372, −11.21354326658703, −10.49210466321803, −10.23951090410705, −9.768728402012127, −9.041196435197200, −8.278811896301974, −7.979604561043147, −7.394476057733181, −6.717066722035525, −6.276568114978124, −5.540189063927464, −5.275429788536788, −4.864019878134659, −4.106975683867754, −3.272153532839683, −2.762029878943754, −1.979327451415643, −1.182099822668794, 0, 0, 1.182099822668794, 1.979327451415643, 2.762029878943754, 3.272153532839683, 4.106975683867754, 4.864019878134659, 5.275429788536788, 5.540189063927464, 6.276568114978124, 6.717066722035525, 7.394476057733181, 7.979604561043147, 8.278811896301974, 9.041196435197200, 9.768728402012127, 10.23951090410705, 10.49210466321803, 11.21354326658703, 11.48494403939372, 12.05391976594045, 12.48641679259496, 13.09086806301249, 13.52422733402692, 13.84520359535265, 14.73429153885774

Graph of the $Z$-function along the critical line