Properties

Label 2-72828-1.1-c1-0-13
Degree $2$
Conductor $72828$
Sign $1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s + 6·13-s − 2·19-s − 25-s + 8·29-s + 2·35-s − 2·37-s + 2·41-s + 8·43-s + 8·47-s + 49-s + 2·53-s − 12·59-s + 4·61-s + 12·65-s + 12·67-s − 8·73-s + 8·79-s − 10·89-s + 6·91-s − 4·95-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s + 1.66·13-s − 0.458·19-s − 1/5·25-s + 1.48·29-s + 0.338·35-s − 0.328·37-s + 0.312·41-s + 1.21·43-s + 1.16·47-s + 1/7·49-s + 0.274·53-s − 1.56·59-s + 0.512·61-s + 1.48·65-s + 1.46·67-s − 0.936·73-s + 0.900·79-s − 1.05·89-s + 0.628·91-s − 0.410·95-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.081977801\)
\(L(\frac12)\) \(\approx\) \(4.081977801\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97430800612745, −13.75219307620529, −13.18557983985612, −12.64043199326678, −12.16710739930725, −11.54475863572892, −10.94115086400176, −10.64136379185375, −10.16707547304933, −9.450709140111622, −9.068422916325807, −8.446361516442434, −8.148034237227246, −7.412138415575014, −6.686632604404810, −6.296297486186707, −5.721817018846233, −5.392498879832578, −4.442466329813545, −4.122329016023037, −3.330511958101592, −2.637354688048276, −1.996518212710818, −1.328893009972771, −0.7125986581304658, 0.7125986581304658, 1.328893009972771, 1.996518212710818, 2.637354688048276, 3.330511958101592, 4.122329016023037, 4.442466329813545, 5.392498879832578, 5.721817018846233, 6.296297486186707, 6.686632604404810, 7.412138415575014, 8.148034237227246, 8.446361516442434, 9.068422916325807, 9.450709140111622, 10.16707547304933, 10.64136379185375, 10.94115086400176, 11.54475863572892, 12.16710739930725, 12.64043199326678, 13.18557983985612, 13.75219307620529, 13.97430800612745

Graph of the $Z$-function along the critical line