Properties

Label 2-728-1.1-c1-0-13
Degree $2$
Conductor $728$
Sign $-1$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 7-s + 9-s + 4·11-s − 13-s + 2·15-s − 6·17-s + 19-s − 2·21-s + 23-s − 4·25-s + 4·27-s + 3·29-s − 7·31-s − 8·33-s − 35-s − 10·37-s + 2·39-s − 10·41-s − 7·43-s − 45-s − 9·47-s + 49-s + 12·51-s + 3·53-s − 4·55-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.277·13-s + 0.516·15-s − 1.45·17-s + 0.229·19-s − 0.436·21-s + 0.208·23-s − 4/5·25-s + 0.769·27-s + 0.557·29-s − 1.25·31-s − 1.39·33-s − 0.169·35-s − 1.64·37-s + 0.320·39-s − 1.56·41-s − 1.06·43-s − 0.149·45-s − 1.31·47-s + 1/7·49-s + 1.68·51-s + 0.412·53-s − 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17435826410628239370871594677, −9.061227760984532485276071768651, −8.329316103613891831727779509539, −7.00333273487530359010730637345, −6.54503125115405758625293787428, −5.39651500780218077097659142296, −4.61533440054158576539031736984, −3.55373972341149593647255533280, −1.73388343110170206846100508745, 0, 1.73388343110170206846100508745, 3.55373972341149593647255533280, 4.61533440054158576539031736984, 5.39651500780218077097659142296, 6.54503125115405758625293787428, 7.00333273487530359010730637345, 8.329316103613891831727779509539, 9.061227760984532485276071768651, 10.17435826410628239370871594677

Graph of the $Z$-function along the critical line