Properties

Label 2-259e2-1.1-c1-0-6
Degree $2$
Conductor $67081$
Sign $-1$
Analytic cond. $535.644$
Root an. cond. $23.1439$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3-s + 2·4-s − 2·5-s − 2·6-s − 2·9-s − 4·10-s + 3·11-s − 2·12-s − 6·13-s + 2·15-s − 4·16-s + 2·17-s − 4·18-s + 6·19-s − 4·20-s + 6·22-s − 4·23-s − 25-s − 12·26-s + 5·27-s − 4·29-s + 4·30-s − 8·32-s − 3·33-s + 4·34-s − 4·36-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.577·3-s + 4-s − 0.894·5-s − 0.816·6-s − 2/3·9-s − 1.26·10-s + 0.904·11-s − 0.577·12-s − 1.66·13-s + 0.516·15-s − 16-s + 0.485·17-s − 0.942·18-s + 1.37·19-s − 0.894·20-s + 1.27·22-s − 0.834·23-s − 1/5·25-s − 2.35·26-s + 0.962·27-s − 0.742·29-s + 0.730·30-s − 1.41·32-s − 0.522·33-s + 0.685·34-s − 2/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67081\)    =    \(7^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(535.644\)
Root analytic conductor: \(23.1439\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 67081,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
37 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34813631681624, −14.10010101787034, −13.51997531310378, −12.80078257863852, −12.27075109993223, −11.89532001080183, −11.78704613950726, −11.31033681081277, −10.64961065706977, −9.822400405338175, −9.490814053796274, −8.840949245418108, −8.062598315034296, −7.556758924953254, −7.050859617175818, −6.526626795617000, −5.728081191358792, −5.527184719161607, −4.892898782135545, −4.394063119983784, −3.741115912067021, −3.349340684411870, −2.654167730909465, −1.968771792695657, −0.7734911904951141, 0, 0.7734911904951141, 1.968771792695657, 2.654167730909465, 3.349340684411870, 3.741115912067021, 4.394063119983784, 4.892898782135545, 5.527184719161607, 5.728081191358792, 6.526626795617000, 7.050859617175818, 7.556758924953254, 8.062598315034296, 8.840949245418108, 9.490814053796274, 9.822400405338175, 10.64961065706977, 11.31033681081277, 11.78704613950726, 11.89532001080183, 12.27075109993223, 12.80078257863852, 13.51997531310378, 14.10010101787034, 14.34813631681624

Graph of the $Z$-function along the critical line