Properties

Label 67081.i
Number of curves $2$
Conductor $67081$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 67081.i have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(7\)\(1\)
\(37\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 67081.i do not have complex multiplication.

Modular form 67081.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} - 2 q^{9} - 4 q^{10} + 3 q^{11} - 2 q^{12} - 6 q^{13} + 2 q^{15} - 4 q^{16} + 2 q^{17} - 4 q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 67081.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
67081.i1 67081i2 \([0, -1, 1, -127514, -17483649]\) \(38477541376\) \(5959274797\) \([]\) \(237600\) \(1.3911\)  
67081.i2 67081i1 \([0, -1, 1, -604, 4549]\) \(4096\) \(5959274797\) \([]\) \(47520\) \(0.58639\) \(\Gamma_0(N)\)-optimal