Properties

Label 2-259e2-1.1-c1-0-7
Degree $2$
Conductor $67081$
Sign $-1$
Analytic cond. $535.644$
Root an. cond. $23.1439$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s + 2·5-s + 2·6-s − 2·9-s − 4·10-s + 3·11-s − 2·12-s + 6·13-s − 2·15-s − 4·16-s − 2·17-s + 4·18-s − 6·19-s + 4·20-s − 6·22-s + 4·23-s − 25-s − 12·26-s + 5·27-s + 4·29-s + 4·30-s + 8·32-s − 3·33-s + 4·34-s − 4·36-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s + 0.894·5-s + 0.816·6-s − 2/3·9-s − 1.26·10-s + 0.904·11-s − 0.577·12-s + 1.66·13-s − 0.516·15-s − 16-s − 0.485·17-s + 0.942·18-s − 1.37·19-s + 0.894·20-s − 1.27·22-s + 0.834·23-s − 1/5·25-s − 2.35·26-s + 0.962·27-s + 0.742·29-s + 0.730·30-s + 1.41·32-s − 0.522·33-s + 0.685·34-s − 2/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67081\)    =    \(7^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(535.644\)
Root analytic conductor: \(23.1439\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 67081,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
37 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.35117411663659, −13.94332288662429, −13.32953170211436, −13.11758329358275, −12.24122387916503, −11.65076092258699, −11.19564039353364, −10.80899456937381, −10.45947448522892, −9.764352692097021, −9.353778124986738, −8.729866245329580, −8.426122137425439, −8.187842744358089, −6.971117926173524, −6.645953086616255, −6.344761995048651, −5.689396545541571, −5.108573588038758, −4.283351010248584, −3.736157383240503, −2.774987275183602, −2.091693740443860, −1.431785718275064, −0.9055917252139673, 0, 0.9055917252139673, 1.431785718275064, 2.091693740443860, 2.774987275183602, 3.736157383240503, 4.283351010248584, 5.108573588038758, 5.689396545541571, 6.344761995048651, 6.645953086616255, 6.971117926173524, 8.187842744358089, 8.426122137425439, 8.729866245329580, 9.353778124986738, 9.764352692097021, 10.45947448522892, 10.80899456937381, 11.19564039353364, 11.65076092258699, 12.24122387916503, 13.11758329358275, 13.32953170211436, 13.94332288662429, 14.35117411663659

Graph of the $Z$-function along the critical line