Properties

Label 2-66066-1.1-c1-0-37
Degree $2$
Conductor $66066$
Sign $1$
Analytic cond. $527.539$
Root an. cond. $22.9682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 7-s + 8-s + 9-s + 10-s + 12-s + 13-s + 14-s + 15-s + 16-s − 5·17-s + 18-s − 19-s + 20-s + 21-s + 3·23-s + 24-s − 4·25-s + 26-s + 27-s + 28-s − 5·29-s + 30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 0.277·13-s + 0.267·14-s + 0.258·15-s + 1/4·16-s − 1.21·17-s + 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.218·21-s + 0.625·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s − 0.928·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66066 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66066\)    =    \(2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(527.539\)
Root analytic conductor: \(22.9682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 66066,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.968609843\)
\(L(\frac12)\) \(\approx\) \(5.968609843\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.96537654440623, −13.83185347667958, −13.30168245060559, −12.84908090538941, −12.33447092775809, −11.72238619264625, −11.19116398849408, −10.70213436451882, −10.31551285159786, −9.480522498246562, −9.103448871466908, −8.629237490695661, −7.937096152040470, −7.436819295631093, −6.909983364426229, −6.265886879500726, −5.803334200210926, −5.183064607995325, −4.480762698125622, −4.119673461766579, −3.435936981382881, −2.711651817372737, −2.137388249646997, −1.670881378901017, −0.6763302861485115, 0.6763302861485115, 1.670881378901017, 2.137388249646997, 2.711651817372737, 3.435936981382881, 4.119673461766579, 4.480762698125622, 5.183064607995325, 5.803334200210926, 6.265886879500726, 6.909983364426229, 7.436819295631093, 7.937096152040470, 8.629237490695661, 9.103448871466908, 9.480522498246562, 10.31551285159786, 10.70213436451882, 11.19116398849408, 11.72238619264625, 12.33447092775809, 12.84908090538941, 13.30168245060559, 13.83185347667958, 13.96537654440623

Graph of the $Z$-function along the critical line