Properties

Label 2-61152-1.1-c1-0-54
Degree $2$
Conductor $61152$
Sign $1$
Analytic cond. $488.301$
Root an. cond. $22.0975$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 3·11-s − 13-s + 15-s + 6·17-s − 8·19-s + 6·23-s − 4·25-s − 27-s − 5·29-s − 9·31-s + 3·33-s − 8·37-s + 39-s − 8·41-s − 8·43-s − 45-s + 12·47-s − 6·51-s − 5·53-s + 3·55-s + 8·57-s − 15·59-s + 65-s − 4·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 0.904·11-s − 0.277·13-s + 0.258·15-s + 1.45·17-s − 1.83·19-s + 1.25·23-s − 4/5·25-s − 0.192·27-s − 0.928·29-s − 1.61·31-s + 0.522·33-s − 1.31·37-s + 0.160·39-s − 1.24·41-s − 1.21·43-s − 0.149·45-s + 1.75·47-s − 0.840·51-s − 0.686·53-s + 0.404·55-s + 1.05·57-s − 1.95·59-s + 0.124·65-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 61152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 61152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(61152\)    =    \(2^{5} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(488.301\)
Root analytic conductor: \(22.0975\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 61152,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93074879398435, −14.39550784582006, −13.69499812361545, −13.13715431032120, −12.75443850435295, −12.19674570475384, −11.93490370656780, −11.11724899086348, −10.62953228486303, −10.53831069302671, −9.725245618795045, −9.179049563747944, −8.595283306208689, −7.927563887007457, −7.567352844881929, −7.003766894446504, −6.432464697730368, −5.704395266353393, −5.231300932939133, −4.879993919396061, −3.929644834119661, −3.586459533285297, −2.807439910526381, −1.962443601352949, −1.369147248761617, 0, 0, 1.369147248761617, 1.962443601352949, 2.807439910526381, 3.586459533285297, 3.929644834119661, 4.879993919396061, 5.231300932939133, 5.704395266353393, 6.432464697730368, 7.003766894446504, 7.567352844881929, 7.927563887007457, 8.595283306208689, 9.179049563747944, 9.725245618795045, 10.53831069302671, 10.62953228486303, 11.11724899086348, 11.93490370656780, 12.19674570475384, 12.75443850435295, 13.13715431032120, 13.69499812361545, 14.39550784582006, 14.93074879398435

Graph of the $Z$-function along the critical line