Properties

Label 2-57330-1.1-c1-0-48
Degree $2$
Conductor $57330$
Sign $1$
Analytic cond. $457.782$
Root an. cond. $21.3958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 8-s − 10-s + 4·11-s + 13-s + 16-s + 6·17-s + 20-s − 4·22-s + 2·23-s + 25-s − 26-s + 6·29-s + 2·31-s − 32-s − 6·34-s − 6·37-s − 40-s − 2·41-s − 8·43-s + 4·44-s − 2·46-s − 8·47-s − 50-s + 52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.353·8-s − 0.316·10-s + 1.20·11-s + 0.277·13-s + 1/4·16-s + 1.45·17-s + 0.223·20-s − 0.852·22-s + 0.417·23-s + 1/5·25-s − 0.196·26-s + 1.11·29-s + 0.359·31-s − 0.176·32-s − 1.02·34-s − 0.986·37-s − 0.158·40-s − 0.312·41-s − 1.21·43-s + 0.603·44-s − 0.294·46-s − 1.16·47-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(457.782\)
Root analytic conductor: \(21.3958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 57330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.359324304\)
\(L(\frac12)\) \(\approx\) \(2.359324304\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47252928115987, −13.81854215876865, −13.54701278067312, −12.68164597685299, −12.15586090012945, −11.90363981058521, −11.26826706744091, −10.67749173701915, −10.14428117349192, −9.736661375641352, −9.279389637456876, −8.624070300349291, −8.294253630083041, −7.618983847471247, −7.002483440229518, −6.407903619111915, −6.174550680350494, −5.269271019721089, −4.860710929001752, −3.923527049966874, −3.301277376834696, −2.843364354592383, −1.734191101035776, −1.408858736237940, −0.6278675013501225, 0.6278675013501225, 1.408858736237940, 1.734191101035776, 2.843364354592383, 3.301277376834696, 3.923527049966874, 4.860710929001752, 5.269271019721089, 6.174550680350494, 6.407903619111915, 7.002483440229518, 7.618983847471247, 8.294253630083041, 8.624070300349291, 9.279389637456876, 9.736661375641352, 10.14428117349192, 10.67749173701915, 11.26826706744091, 11.90363981058521, 12.15586090012945, 12.68164597685299, 13.54701278067312, 13.81854215876865, 14.47252928115987

Graph of the $Z$-function along the critical line