Properties

Label 2-5200-1.1-c1-0-105
Degree $2$
Conductor $5200$
Sign $-1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·7-s − 2·9-s − 11-s − 13-s − 7·17-s + 3·19-s + 4·21-s − 5·27-s − 4·29-s − 6·31-s − 33-s − 8·37-s − 39-s − 5·41-s + 4·43-s − 12·47-s + 9·49-s − 7·51-s − 10·53-s + 3·57-s − 4·59-s + 8·61-s − 8·63-s + 9·67-s + 8·71-s + 13·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.51·7-s − 2/3·9-s − 0.301·11-s − 0.277·13-s − 1.69·17-s + 0.688·19-s + 0.872·21-s − 0.962·27-s − 0.742·29-s − 1.07·31-s − 0.174·33-s − 1.31·37-s − 0.160·39-s − 0.780·41-s + 0.609·43-s − 1.75·47-s + 9/7·49-s − 0.980·51-s − 1.37·53-s + 0.397·57-s − 0.520·59-s + 1.02·61-s − 1.00·63-s + 1.09·67-s + 0.949·71-s + 1.52·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + T + p T^{2} \) 1.11.b
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.036018389954580931453125919175, −7.28543628872390781437514578146, −6.53555126165593338519170331548, −5.35413770874386861402748234427, −5.08009615398371979250513331732, −4.11689548602201027798426673135, −3.24701724289112651672118397483, −2.22653514858673000839577247140, −1.68859007806646180430559011829, 0, 1.68859007806646180430559011829, 2.22653514858673000839577247140, 3.24701724289112651672118397483, 4.11689548602201027798426673135, 5.08009615398371979250513331732, 5.35413770874386861402748234427, 6.53555126165593338519170331548, 7.28543628872390781437514578146, 8.036018389954580931453125919175

Graph of the $Z$-function along the critical line