Properties

Label 2-51744-1.1-c1-0-29
Degree $2$
Conductor $51744$
Sign $-1$
Analytic cond. $413.177$
Root an. cond. $20.3267$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 11-s − 3·17-s − 3·19-s − 3·23-s − 5·25-s − 27-s + 3·29-s + 6·31-s − 33-s + 5·37-s − 2·41-s + 7·43-s + 3·47-s + 3·51-s − 12·53-s + 3·57-s − 5·59-s + 2·61-s + 4·67-s + 3·69-s − 13·71-s + 8·73-s + 5·75-s − 8·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 0.301·11-s − 0.727·17-s − 0.688·19-s − 0.625·23-s − 25-s − 0.192·27-s + 0.557·29-s + 1.07·31-s − 0.174·33-s + 0.821·37-s − 0.312·41-s + 1.06·43-s + 0.437·47-s + 0.420·51-s − 1.64·53-s + 0.397·57-s − 0.650·59-s + 0.256·61-s + 0.488·67-s + 0.361·69-s − 1.54·71-s + 0.936·73-s + 0.577·75-s − 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51744\)    =    \(2^{5} \cdot 3 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(413.177\)
Root analytic conductor: \(20.3267\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.71757376043026, −14.13171022837877, −13.80094794373224, −13.07214381101228, −12.74733358820952, −12.06890910530216, −11.70972359011369, −11.15725821615028, −10.71066324098931, −10.03091611583777, −9.742427883536394, −8.956030656278692, −8.553783541483416, −7.779269106703190, −7.463282316654316, −6.505580532714790, −6.304149553420006, −5.800636769693996, −4.951430382542659, −4.405275802944769, −4.036135872158302, −3.151976006354471, −2.374785237967351, −1.756395997456913, −0.8559121604235135, 0, 0.8559121604235135, 1.756395997456913, 2.374785237967351, 3.151976006354471, 4.036135872158302, 4.405275802944769, 4.951430382542659, 5.800636769693996, 6.304149553420006, 6.505580532714790, 7.463282316654316, 7.779269106703190, 8.553783541483416, 8.956030656278692, 9.742427883536394, 10.03091611583777, 10.71066324098931, 11.15725821615028, 11.70972359011369, 12.06890910530216, 12.74733358820952, 13.07214381101228, 13.80094794373224, 14.13171022837877, 14.71757376043026

Graph of the $Z$-function along the critical line