Properties

Label 2-48960-1.1-c1-0-27
Degree $2$
Conductor $48960$
Sign $1$
Analytic cond. $390.947$
Root an. cond. $19.7723$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 2·7-s − 5·13-s + 17-s + 19-s − 6·23-s + 25-s − 9·29-s − 31-s + 2·35-s + 4·37-s + 6·41-s − 2·43-s + 9·47-s − 3·49-s − 9·53-s + 3·59-s + 7·61-s − 5·65-s − 14·67-s − 3·71-s + 11·73-s + 8·79-s + 85-s + 9·89-s − 10·91-s + 95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.755·7-s − 1.38·13-s + 0.242·17-s + 0.229·19-s − 1.25·23-s + 1/5·25-s − 1.67·29-s − 0.179·31-s + 0.338·35-s + 0.657·37-s + 0.937·41-s − 0.304·43-s + 1.31·47-s − 3/7·49-s − 1.23·53-s + 0.390·59-s + 0.896·61-s − 0.620·65-s − 1.71·67-s − 0.356·71-s + 1.28·73-s + 0.900·79-s + 0.108·85-s + 0.953·89-s − 1.04·91-s + 0.102·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48960\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(390.947\)
Root analytic conductor: \(19.7723\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48960,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.023803735\)
\(L(\frac12)\) \(\approx\) \(2.023803735\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.43416324659471, −14.24944800338576, −13.55355598192290, −13.00187321755018, −12.46516874214368, −12.00923714272781, −11.45586964021490, −10.98276727976941, −10.34190699539698, −9.851205075133409, −9.353924878473955, −8.949970927477059, −7.995810607285962, −7.737767771889117, −7.285732598247310, −6.491718835814105, −5.859475706874503, −5.373078156502567, −4.823002776220885, −4.208843131158588, −3.559016211659384, −2.645433707267892, −2.117071892725948, −1.539769291667489, −0.4861163803870779, 0.4861163803870779, 1.539769291667489, 2.117071892725948, 2.645433707267892, 3.559016211659384, 4.208843131158588, 4.823002776220885, 5.373078156502567, 5.859475706874503, 6.491718835814105, 7.285732598247310, 7.737767771889117, 7.995810607285962, 8.949970927477059, 9.353924878473955, 9.851205075133409, 10.34190699539698, 10.98276727976941, 11.45586964021490, 12.00923714272781, 12.46516874214368, 13.00187321755018, 13.55355598192290, 14.24944800338576, 14.43416324659471

Graph of the $Z$-function along the critical line