Properties

Label 2-47808-1.1-c1-0-26
Degree $2$
Conductor $47808$
Sign $1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s + 5·11-s + 4·13-s + 4·17-s + 19-s − 23-s − 4·25-s − 2·29-s + 4·31-s − 2·35-s + 9·37-s + 8·41-s + 4·43-s + 8·47-s − 3·49-s − 9·53-s − 5·55-s − 59-s + 5·61-s − 4·65-s − 13·67-s + 2·71-s + 6·73-s + 10·77-s − 83-s − 4·85-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s + 1.50·11-s + 1.10·13-s + 0.970·17-s + 0.229·19-s − 0.208·23-s − 4/5·25-s − 0.371·29-s + 0.718·31-s − 0.338·35-s + 1.47·37-s + 1.24·41-s + 0.609·43-s + 1.16·47-s − 3/7·49-s − 1.23·53-s − 0.674·55-s − 0.130·59-s + 0.640·61-s − 0.496·65-s − 1.58·67-s + 0.237·71-s + 0.702·73-s + 1.13·77-s − 0.109·83-s − 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.632909282\)
\(L(\frac12)\) \(\approx\) \(3.632909282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.48965815926952, −14.14779456570008, −13.72268049628201, −13.00432123488111, −12.42720018524138, −11.87990590450402, −11.48419916939375, −11.14061118229234, −10.54029990208001, −9.775064886475791, −9.313515508593786, −8.854375909094530, −8.088630019427246, −7.824188006728263, −7.265357763879556, −6.395893170294133, −6.036932092492346, −5.507671051495642, −4.534038569324584, −4.167129677943824, −3.644084740186532, −2.960991802708806, −1.986661682692860, −1.259468396809284, −0.7837189292609485, 0.7837189292609485, 1.259468396809284, 1.986661682692860, 2.960991802708806, 3.644084740186532, 4.167129677943824, 4.534038569324584, 5.507671051495642, 6.036932092492346, 6.395893170294133, 7.265357763879556, 7.824188006728263, 8.088630019427246, 8.854375909094530, 9.313515508593786, 9.775064886475791, 10.54029990208001, 11.14061118229234, 11.48419916939375, 11.87990590450402, 12.42720018524138, 13.00432123488111, 13.72268049628201, 14.14779456570008, 14.48965815926952

Graph of the $Z$-function along the critical line