Properties

Label 2-47775-1.1-c1-0-86
Degree $2$
Conductor $47775$
Sign $-1$
Analytic cond. $381.485$
Root an. cond. $19.5316$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 4-s − 6-s + 3·8-s + 9-s + 4·11-s − 12-s − 13-s − 16-s + 6·17-s − 18-s − 8·19-s − 4·22-s + 4·23-s + 3·24-s + 26-s + 27-s − 2·29-s + 4·31-s − 5·32-s + 4·33-s − 6·34-s − 36-s − 10·37-s + 8·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s − 1/2·4-s − 0.408·6-s + 1.06·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s − 0.277·13-s − 1/4·16-s + 1.45·17-s − 0.235·18-s − 1.83·19-s − 0.852·22-s + 0.834·23-s + 0.612·24-s + 0.196·26-s + 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.883·32-s + 0.696·33-s − 1.02·34-s − 1/6·36-s − 1.64·37-s + 1.29·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47775\)    =    \(3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(381.485\)
Root analytic conductor: \(19.5316\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47775,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + T + p T^{2} \) 1.2.b
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73831706479598, −14.31735748798843, −13.95762415477063, −13.32774613513231, −12.78100865152861, −12.30874017829872, −11.83650680034722, −10.97426460595015, −10.56637669068657, −10.01126741744129, −9.524674059162188, −9.063008940923401, −8.572788992596303, −8.150349882868349, −7.624329704012831, −6.818815825646607, −6.612003041737246, −5.600007103377036, −5.032853146539789, −4.328593958661545, −3.828728850139536, −3.282509492279062, −2.337422028597267, −1.573222038546134, −1.035613994855507, 0, 1.035613994855507, 1.573222038546134, 2.337422028597267, 3.282509492279062, 3.828728850139536, 4.328593958661545, 5.032853146539789, 5.600007103377036, 6.612003041737246, 6.818815825646607, 7.624329704012831, 8.150349882868349, 8.572788992596303, 9.063008940923401, 9.524674059162188, 10.01126741744129, 10.56637669068657, 10.97426460595015, 11.83650680034722, 12.30874017829872, 12.78100865152861, 13.32774613513231, 13.95762415477063, 14.31735748798843, 14.73831706479598

Graph of the $Z$-function along the critical line