Properties

Label 2-47190-1.1-c1-0-40
Degree $2$
Conductor $47190$
Sign $-1$
Analytic cond. $376.814$
Root an. cond. $19.4116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 2·7-s + 8-s + 9-s + 10-s − 12-s + 13-s − 2·14-s − 15-s + 16-s − 4·17-s + 18-s + 2·19-s + 20-s + 2·21-s − 6·23-s − 24-s + 25-s + 26-s − 27-s − 2·28-s + 4·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s + 0.277·13-s − 0.534·14-s − 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 0.458·19-s + 0.223·20-s + 0.436·21-s − 1.25·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s − 0.377·28-s + 0.742·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47190\)    =    \(2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(376.814\)
Root analytic conductor: \(19.4116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 47190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.78375079723541, −14.12040755248241, −13.90296719379940, −13.15399362159997, −12.86122200746030, −12.42240006891714, −11.77442805351404, −11.31905786548614, −10.76936460878230, −10.27223125558096, −9.725511807958608, −9.211148421051290, −8.589814275501108, −7.819638683915587, −7.183546279024000, −6.705994037298409, −6.068553486231479, −5.841201379860992, −5.140152931004640, −4.476282780506072, −3.907151513544170, −3.316493363853210, −2.472293123759960, −1.945910408133596, −0.9904223499572070, 0, 0.9904223499572070, 1.945910408133596, 2.472293123759960, 3.316493363853210, 3.907151513544170, 4.476282780506072, 5.140152931004640, 5.841201379860992, 6.068553486231479, 6.705994037298409, 7.183546279024000, 7.819638683915587, 8.589814275501108, 9.211148421051290, 9.725511807958608, 10.27223125558096, 10.76936460878230, 11.31905786548614, 11.77442805351404, 12.42240006891714, 12.86122200746030, 13.15399362159997, 13.90296719379940, 14.12040755248241, 14.78375079723541

Graph of the $Z$-function along the critical line