Properties

Label 2-46800-1.1-c1-0-118
Degree $2$
Conductor $46800$
Sign $-1$
Analytic cond. $373.699$
Root an. cond. $19.3313$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 4·11-s + 13-s − 4·17-s − 6·19-s + 4·29-s − 6·31-s + 2·37-s − 10·41-s + 8·43-s − 3·49-s − 4·53-s + 4·59-s + 2·61-s + 6·67-s − 8·71-s − 10·73-s + 8·77-s + 4·79-s + 12·83-s + 2·89-s + 2·91-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s + 1.20·11-s + 0.277·13-s − 0.970·17-s − 1.37·19-s + 0.742·29-s − 1.07·31-s + 0.328·37-s − 1.56·41-s + 1.21·43-s − 3/7·49-s − 0.549·53-s + 0.520·59-s + 0.256·61-s + 0.733·67-s − 0.949·71-s − 1.17·73-s + 0.911·77-s + 0.450·79-s + 1.31·83-s + 0.211·89-s + 0.209·91-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(46800\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(373.699\)
Root analytic conductor: \(19.3313\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 46800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.80626530836655, −14.42822283933806, −13.91969282439151, −13.27433190038636, −12.86003473461190, −12.25199521919627, −11.61549537435902, −11.37316914886044, −10.62920312575078, −10.43925492903553, −9.419757276115243, −9.127255230308853, −8.472926226003134, −8.205475177101219, −7.364796649191534, −6.755213969981705, −6.383652455332150, −5.768455187026666, −4.948000347483416, −4.439627617115683, −3.964631932156950, −3.287952079380347, −2.293135469403591, −1.817581165578218, −1.074659495455045, 0, 1.074659495455045, 1.817581165578218, 2.293135469403591, 3.287952079380347, 3.964631932156950, 4.439627617115683, 4.948000347483416, 5.768455187026666, 6.383652455332150, 6.755213969981705, 7.364796649191534, 8.205475177101219, 8.472926226003134, 9.127255230308853, 9.419757276115243, 10.43925492903553, 10.62920312575078, 11.37316914886044, 11.61549537435902, 12.25199521919627, 12.86003473461190, 13.27433190038636, 13.91969282439151, 14.42822283933806, 14.80626530836655

Graph of the $Z$-function along the critical line