Properties

Label 2-41280-1.1-c1-0-91
Degree $2$
Conductor $41280$
Sign $1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 9-s − 4·11-s + 5·13-s + 15-s − 8·17-s − 5·19-s − 21-s − 8·23-s + 25-s − 27-s + 3·29-s + 31-s + 4·33-s − 35-s − 8·37-s − 5·39-s − 11·41-s − 43-s − 45-s − 10·47-s − 6·49-s + 8·51-s + 2·53-s + 4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s + 1.38·13-s + 0.258·15-s − 1.94·17-s − 1.14·19-s − 0.218·21-s − 1.66·23-s + 1/5·25-s − 0.192·27-s + 0.557·29-s + 0.179·31-s + 0.696·33-s − 0.169·35-s − 1.31·37-s − 0.800·39-s − 1.71·41-s − 0.152·43-s − 0.149·45-s − 1.45·47-s − 6/7·49-s + 1.12·51-s + 0.274·53-s + 0.539·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
43 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 11 T + p T^{2} \) 1.41.l
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.35500030194785, −15.00404201051045, −14.06554924915108, −13.64713958451997, −13.14246401753476, −12.78121244620579, −12.01890703428888, −11.61390723414502, −10.94761454588577, −10.76062937385589, −10.22694930311868, −9.562521676606333, −8.576176908765496, −8.363185701758371, −8.067737531601678, −7.061725582204580, −6.507094180341809, −6.265280863452112, −5.315420171604750, −4.923315731452277, −4.171858431322107, −3.811998707327230, −2.854253085019860, −2.029287301483190, −1.505414301187019, 0, 0, 1.505414301187019, 2.029287301483190, 2.854253085019860, 3.811998707327230, 4.171858431322107, 4.923315731452277, 5.315420171604750, 6.265280863452112, 6.507094180341809, 7.061725582204580, 8.067737531601678, 8.363185701758371, 8.576176908765496, 9.562521676606333, 10.22694930311868, 10.76062937385589, 10.94761454588577, 11.61390723414502, 12.01890703428888, 12.78121244620579, 13.14246401753476, 13.64713958451997, 14.06554924915108, 15.00404201051045, 15.35500030194785

Graph of the $Z$-function along the critical line