Properties

Label 2-408-1.1-c1-0-1
Degree $2$
Conductor $408$
Sign $1$
Analytic cond. $3.25789$
Root an. cond. $1.80496$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·5-s + 9-s − 11-s + 3·13-s − 3·15-s − 17-s + 19-s + 7·23-s + 4·25-s − 27-s + 6·29-s − 2·31-s + 33-s − 4·37-s − 3·39-s + 9·41-s − 43-s + 3·45-s + 10·47-s − 7·49-s + 51-s − 2·53-s − 3·55-s − 57-s − 6·59-s − 12·61-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.34·5-s + 1/3·9-s − 0.301·11-s + 0.832·13-s − 0.774·15-s − 0.242·17-s + 0.229·19-s + 1.45·23-s + 4/5·25-s − 0.192·27-s + 1.11·29-s − 0.359·31-s + 0.174·33-s − 0.657·37-s − 0.480·39-s + 1.40·41-s − 0.152·43-s + 0.447·45-s + 1.45·47-s − 49-s + 0.140·51-s − 0.274·53-s − 0.404·55-s − 0.132·57-s − 0.781·59-s − 1.53·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(408\)    =    \(2^{3} \cdot 3 \cdot 17\)
Sign: $1$
Analytic conductor: \(3.25789\)
Root analytic conductor: \(1.80496\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.468717283\)
\(L(\frac12)\) \(\approx\) \(1.468717283\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99020175311044249754123563552, −10.48987317087196639801806599606, −9.469292487853741982094624554205, −8.730686790656812538651452890426, −7.32843269717286178163258400168, −6.29479205975676746085811661026, −5.62818700463789751758773761734, −4.59174724472301644959370410844, −2.89883589273214610624179644709, −1.39385455464072664196875612123, 1.39385455464072664196875612123, 2.89883589273214610624179644709, 4.59174724472301644959370410844, 5.62818700463789751758773761734, 6.29479205975676746085811661026, 7.32843269717286178163258400168, 8.730686790656812538651452890426, 9.469292487853741982094624554205, 10.48987317087196639801806599606, 10.99020175311044249754123563552

Graph of the $Z$-function along the critical line